Hydrogen production by water splitting over a Pt−TiO2 catalyst has been studied. The main
goal of the studies was to examine the influence of sacrificial reagents on the photocatalytic
efficiency in water splitting reactions under ultraviolet (UV) irradiation. Various sacrificial
reagents, such as methanol, Na2S, and ethylene diamine tetraacetic acid (EDTA), as well as I-
and IO3
- ions, were used to obtain an effective water splitting to H and O atoms. It was revealed
that, in the case of using methanol as the sacrificial reagent, hydrogen evolution is also a result
of methanol conversion. Photocatalytic water splitting was obtained when EDTA and Na2S were
used as the sacrificial reagents.
As the fibre reinforced plastic composites gain larger and larger share in industry, the problem of joining them with metal elements becomes significant. The current paper is the first part of the literature review, which gathers and evaluates knowledge about methods suitable for mechanical joining of composite and metal elements. This paper concerns bolted joining, because this method of mechanical joining is widely used for joining composite materials. The paper describes failure modes of bolted joints in composite materials, the influence of the bolt clamping torque, the clearance between the bolt and the hole and aging on the performance of the joint, drilling techniques used in composite materials in order to minimize damages, different fastener types, inspection techniques, and finally, the techniques that have been developed in order to improve the strength of the bolted joints in composites. Since the hole drilled in a composite material in order to perform bolted joining is a weak point of the structure, those techniques: bonded inserts, titanium foil internal inserts, fibre steering, additional reinforcement, and moulded holes, mainly aim to improve the strength of the hole in the composite. The techniques have been discussed in details and compared with each other in the summary section.
As fiber reinforced plastic composites gain an increasingly larger share in aerospace structures, the problem of joining them with metal elements becomes significant. The current paper is the second part of the literature review, which gathers and evaluates knowledge about methods suitable for the mechanical joining of composite and metal elements. This paper reviews the joining methods other than bolted joining, which are discussed in the first part of the review, namely self-piercing riveting, friction riveting, clinching, non-adhesive form-locked joints, pin joints, and loop joints. Some of those methods are full-fledged and employed in commercial applications, whereas others are merely ideas tested at the level of specimens. The current review describes the ideas and the qualities of the joining methods as well as the experimental work carried out so far. The summary section of this paper contains a comparison of those methods with the reference to their qualities, which is important from the point of view of a composite structure designer: possibility of the joint disassembly, damages induced in composite, complication level, weight penalty, range of possible materials to be joined, and the joint strength.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.