As the gap between donors and patients in need of an organ transplant continues to widen, research in regenerative medicine seeks to provide alternative strategies for treatment. One of the most promising techniques for tissue and organ regeneration is decellularization, in which the extracellular matrix (ECM) is isolated from its native cells and genetic material in order to produce a natural scaffold. The ECM, which ideally retains its inherent structural, biochemical, and biomechanical cues, can then be recellularized to produce a functional tissue or organ. While decellularization can be accomplished using chemical and enzymatic, physical, or combinative methods, each strategy has both benefits and drawbacks. The focus of this review is to compare the advantages and disadvantages of these methods in terms of their ability to retain desired ECM characteristics for particular tissues and organs. Additionally, a few applications of constructs engineered using decellularized cell sheets, tissues, and whole organs are discussed.
Convergent advances in the field of soft matter, macromolecular chemistry, and engineering have led to the development of biomaterials that possess autonomous, adaptive, and self-healing characteristics similar to living systems. These rationally designed biomaterials can surpass the capabilities of their parent material. Herein, the modification of hyaluronic acid (HA) to exhibit self-healing properties is described, and its physical and biological function both in vitro and in vivo is studied. The in vitro findings showed that self-healing HA designed to undergo self-repair improves lubrication, enhances free radical scavenging, and attenuates enzymatic degradation compared to unmodified HA. Longitudinal imaging following intraarticular injection of self-healing HA shows improved in vivo retention despite its low molecular weight. Concomitant with these functions, intraarticular injection of self-healing HA mitigates anterior cruciate ligament injury-mediated cartilage degeneration in rodents. This proof-of-concept study shows how incorporation of functional properties such as self-healing can be used to surpass the existing capabilities of biolubricants.
The gas exchange units of the lung, the alveoli, are mechanically active and undergo cyclic deformation during breathing. The epithelial cells that line the alveoli contribute to lung function by reducing surface tension via surfactant secretion, which is highly influenced by the breathing-associated mechanical cues. These spatially heterogeneous mechanical cues have been linked to several physiological and pathophysiological states. Here, we describe the development of a microfluidically assisted lung cell culture model that incorporates heterogeneous cyclic stretching to mimic alveolar respiratory motions. Employing this device, we have examined the effects of respiratory biomechanics (associated with breathing-like movements) and strain heterogeneity on alveolar epithelial cell functions. Furthermore, we have assessed the potential application of this platform to model altered matrix compliance associated with lung pathogenesis and ventilator-induced lung injury. Lung microphysiological platforms incorporating human cells and dynamic biomechanics could serve as an important tool to delineate the role of alveolar micromechanics in physiological and pathological outcomes in the lung.
Convergent advances in the field of soft matter, macromolecular chemistry, and engineering have led to the development of biomaterials that possess autonomous, adaptive, and self-healing characteristics similar to living systems. These rationally designed biomaterials could surpass the capabilities of their parent material. Herein, we describe the modification of hyaluronic acid (HA) molecules to exhibit self-healing properties and studied its physical and biological function both in vitro and in vivo. Our in vitro findings showed that self-healing HA designed to undergo autonomous repair improved lubrication, enhanced free radical scavenging, and resisted enzymatic degradation compared to unmodified HA. Longitudinal imaging following intra-articular injection of self-healing HA showed improved in vivo retention despite the low molecular weight. Concomitant with these functions, intra-articular injection of self-healing HA mitigated anterior cruciate ligament injury-mediated cartilage degeneration in rodents. This proof-of-concept study shows how incorporation of functional properties like self-healing can be used to surpass the existing capabilities of biolubricants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.