In this study, the susceptibility to erythromycin (E) and to trimethoprim/sulfamethoxazole (SXT) among isolates of Enterococcus spp. and Escherichia coli was tested, respectively. Both fecal indicators were detected and isolated from raw (RW) and treated wastewater (TW) as well as from samples of activated sludge (AS) collected in a local wastewater treatment plant (WWTP). Biodiversity of bacterial community in AS was also monitored using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). Additionally, distribution of sul1-3 genes conferring sulfonamide resistance was tested among SXT-resistant E. coli. Simultaneously, basic physicochemical parameters and concentrations of eight antimicrobial compounds (belonging to folate pathway inhibitors and macrolides class) were analyzed in RW and TW samples. Six of the selected antimicrobial agents, namely: erythromycin, clarithromycin, trimethoprim, roxithromycin, sulfamethoxazole, and N-acetyl-sulfamethoxazole were detected in the wastewater samples. Bacterial biodiversity of AS samples were comparable with no relevant differences. Among tested Enterococcus spp., E-resistant isolates constituted 41%. SXT resistance was less prevalent in E. coli with 11% of isolates. The genes conferring resistance to sulfonamides (sul1-3) were detected in SXT-resistant E. coli of wastewater origin with similar frequencies as in other environmental compartments, including clinical ones.
Heavy metal pollution of soil is a signifi cant environmental problem and has a negative impact on human health and agriculture. Phytoremediation can be an alternative environmental treatment technology, using the natural ability of plants to take up and accumulate pollutants or transform them. Proper development of plants in contaminated areas (e.g. heavy metals) requires them to generate the appropriate protective mechanisms against the toxic effects of these pollutants. This paper presents an overview of the physiological mechanisms of stress avoidance and tolerance by plants used in phytoremediation of heavy metals.Unauthenticated Download Date | 5/11/18 8:01 PM
Antibiotics are a group of substances potentially harmful to the environment. They can play a role in bacterial resistance transfer among pathogenic and non-pathogenic bacteria. In this experiment three representatives of medically important chemotherapeutics, confi rmed to be present in high concentrations in wastewater treatment plants with HPLC analysis were used: erythromycin, sulfamethoxazole and trimethoprim. Erythromycin concentration in activated sludge was not higher than 20 ng L , respectively in winter and summer. Due to a wide variety of PCR-detectable resistance mechanisms towards these substances, the most common found in literature was chosen. For erythromycin: erm and mef genes, for sulfamethoxazole: sul1, sul2, sul3 genes, in the case of trimethoprim resistance dhfrA1 and dhfr14 were used in this study. The presence of resistance genes were analyzed in pure strains isolated from activated sludge and in the activated sludge sample itself. The research revealed that the value of minimal inhibitory concentration (MIC) did not correspond with the expected presence of more than one resistance mechanisms. Most of the isolates possessed only one of the genes responsible for a particular chemotherapeutic resistance. It was confi rmed that it is possible to monitor the presence of resistance genes directly in activated sludge using PCR. Due to the limited isolates number used in the experiment these results should be regarded as preliminary.
Abstract:The paper deals with the problem of the determination of the effects of temperature on the effi ciency of the nitrifi cation process of industrial wastewater, as well as its toxicity to the test organisms. The study on nitrifi cation effi ciency was performed using wastewater from one of Polish chemical factories. The chemical factory produces nitrogen fertilizers and various chemicals. The investigated wastewater was taken from the infl uent to the industrial mechanical-biological wastewater treatment plant (WWTP). The WWTP guaranteed high removal effi ciency of organic compounds defi ned as chemical oxygen demand (COD) but periodical failure of nitrifi cation performance was noted in last years of the WWTP operation. The research aim was to establish the cause of recurring failures of nitrifi cation process in the above mentioned WWTP. The tested wastewater was not acutely toxic to activated sludge microorganisms. However, the wastewater was genotoxic to activated sludge microorganisms and the genotoxicity was greater in winter than in spring time. Analysis of almost 3 years' period of the WWTP operation data and laboratory batch tests showed that activated sludge from the WWTP under study is very sensitive to temperature changes and the nitrifi cation effi ciency collapses rapidly under 16°C. Additionally, it was calculated that in order to provide the stable nitrifi cation, in winter period the sludge age (SRT) in the WWTP should be higher than 35 days.
This article presents the results of research into the influence of one, two and three wastewater feedings in a cycle on efficiency and performance of combined biological nitrogen and phosphorus removal in an integrated fixed-film activated sludge and moving-bed sequencing batch biofilm reactor (IFAS-MBSBBR). The experiment lasted 158 days and was conducted in two laboratory models of the IFAS-MBSBBR with an active volume of 28 L. It was found that along with an increase in the number of wastewater feedings, an increase in nitrogen removal efficiency was observed (from 56.9 ± 2.30% for a single feeding to 91.4 ± 1.77% for three feedings). Moreover, the contribution of simultaneous nitrification/denitrification in nitrogen removal increased (from 2.58% for a single feeding to 69.5% for three feedings). Systems with a greater number of feedings stimulated the process of denitrifying phosphorus removal. Regardless of the way in which wastewater feeding was applied to the IFAS-MBSBBR, highly efficient chemical oxygen demand (COD) removal (94.8 ± 1.80%) and biological phosphorus removal (98.9 ± 0.87%) were achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.