The fractional quantum Hall effect is a canonical example of topological phases. While electric currents flow downstream in edge modes, neutral edge modes, observed only in hole-conjugate states and in n ¼ 5/2, flow upstream. It is believed that the latter transport results from multiple counter-propagating channels-mixed by disorder that is accompanied by Coulomb interaction. Here we report on sensitive shot noise measurements that reveal unexpected presence of neutral modes in non-hole-conjugate fractional states; however, not in the integer states. Furthermore, the incompressible bulk is also found to allow energy transport. While density reconstructions along the edge may account for the energy carrying edge modes, the origin of the bulk energy modes is unidentified. The proliferation of neutral modes changes drastically the accepted transport picture of the fractional quantum Hall effects. Their apparent ubiquitous presence may explain the lack of interference of fractional quasiparticles-preventing observation of fractional statistics.
We report an observation, via sensitive shot noise measurements, of charge fractionalization of chiral edge electrons in the integer quantum Hall effect regime. Such fractionalization results solely from interchannel Coulomb interaction, leading electrons to decompose to excitations carrying fractional charges. The experiment was performed by guiding a partitioned current carrying edge channel in proximity to another unbiased edge channel, leading to shot noise in the unbiased edge channel without net current, which exhibited an unconventional dependence on the partitioning. The determination of the fractional excitations, as well as the relative velocities of the two original (prior to the interaction) channels, relied on a recent theory pertaining to this measurement. Our result exemplifies the correlated nature of multiple chiral edge channels in the integer quantum Hall effect regime.
Majorana quasiparticles are generally detected in a 1D topological superconductor by tunneling electrons into its edge, with an emergent zero-bias conductance peak (ZBCP). However, such a ZBCP can also result from other mechanisms, hence, additional verifications are required. Since the emergence of a Majorana must be accompanied by an opening of a topological gap in the bulk, two simultaneous measurements are performed: one in the bulk and another at the edge of a 1D InAs nanowire coated with epitaxial aluminum. Only under certain experimental parameters, a closing of the superconducting bulk-gap that is followed by its reopening, appears simultaneously with a ZBCP at the edge. Such events suggest the occurrence of a topologically non-trivial phase. Yet, we also find that ZBCPs are observed under different tuning parameters without simultaneous reopening of a bulk-gap. This demonstrates the importance of simultaneous probing of bulk and edge in the identification of Majorana edge-states.
It is well established that density reconstruction at the edge of a two-dimensional electron gas takes place for hole-conjugate states in the fractional quantum Hall effect (such as v=2/3, 3/5, etc.). Such reconstruction leads, after equilibration between counterpropagating edge channels, to a downstream chiral current edge mode accompanied by upstream chiral neutral modes (carrying energy without net charge). Short equilibration length prevented thus far observation of the counterpropagating current channels-the hallmark of density reconstruction. Here, we provide evidence for such nonequilibrated counterpropagating current channels, in short regions (l=4 μm and l=0.4 μm) of fractional filling v=2/3 and, unexpectedly, v=1/3, sandwiched between two regions of integer filling v=1. Rather than a two-terminal fractional conductance, the conductance exhibited a significant ascension towards unity quantum conductance (GQ=e(2)/h) at or near the fractional plateaus. We attribute this conductance rise to the presence of a nonequilibrated channel in the fractional short regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.