Entanglement is at the heart of the Einstein-Podolsky-Rosen paradox, where the non-locality is a necessary ingredient. Cooper pairs in superconductors can be split adiabatically, thus forming entangled electrons. Here, we fabricate such an electron splitter by contacting an aluminium superconductor strip at the centre of a suspended InAs nanowire. The nanowire is terminated at both ends with two normal metallic drains. Dividing each half of the nanowire by a gate-induced Coulomb blockaded quantum dot strongly impeds the flow of Cooper pairs due to the large charging energy, while still permitting passage of single electrons. We provide conclusive evidence of extremely high efficiency Cooper pair splitting via observing positive two-particle correlations of the conductance and the shot noise of the split electrons in the two opposite drains of the nanowire. Moreover, the actual charge of the injected quasiparticles is verified by shot noise measurements.
Energy dissipation is a fundamental process governing the dynamics of physical, chemical, and biological systems. It is also one of the main characteristics distinguishing quantum and classical phenomena. In condensed matter physics, in particular, scattering mechanisms, loss of quantum information, or breakdown of topological protection are deeply rooted in the intricate details of how and where the dissipation occurs. Despite its vital importance the microscopic behavior of a system is usually not formulated in terms of dissipation because the latter is not a readily measureable quantity on the microscale. Although nanoscale thermometry is gaining much recent interest [1][2][3][4][5][6][7][8][9][10][11][12][13][14][15] , the existing thermal imaging methods lack the necessary sensitivity and are unsuitable for low temperature operation required for study of quantum systems. Here we report a superconducting quantum interference nano-thermometer device with sub 50 nm diameter that resides at the apex of a sharp pipette and provides scanning cryogenic thermal sensing with four orders of magnitude improved thermal sensitivity of below 1 µK/Hz 1/2 . The non-contact non-invasive thermometry allows thermal imaging of very low nanoscale energy dissipation down to the fundamental Landauer limit [16][17][18] of 40 fW for continuous readout of a single qubit at 1 GHz at 4.2 K. These advances enable observation of dissipation due to single electron charging of individual quantum dots in carbon nanotubes and reveal a novel dissipation mechanism due to resonant localized states in hBN encapsulated graphene, opening the door to direct imaging of nanoscale dissipation processes in quantum matter. 2 Investigation of energy dissipation on the nanoscale is of major fundamental interest for a wide range of disciplines from biological processes, through chemical reactions, to energy-efficient computing [1][2][3][4][5] . Study of dissipation mechanisms in quantum systems is of particular importance because dissipation demolishes quantum information. In order to preserve a quantum state the dissipation has to be extremely weak and hence hard to measure. As a figure of merit for detection of low power dissipation in quantum systems 16 we consider an ideal qubit operating at a typical readout frequency of 1 GHz. Landauer's principle states the lowest bound on energy dissipation in an irreversible qubit operation to be 0 = B ln 2, where B is Boltzmann's constant and is the temperature 17,18 . At = 4.2 K, 0 = 410 -23 J, several orders of magnitude below 10 -19 J of dissipation per logical operation in present day superconducting electronics and 10 -15 J in CMOS devices 19,20 . Hence the power dissipated by an ideal qubit operating at a readout rate of = 1 GHz will be as low as = 0 = 40.2 fW. The resulting temperature increase of the qubit will depend on its size and the thermal properties of the substrate. For example, a 120 × 120 nm 2 device on a 1 µm thick SiO 2 /Si substrate dissipating 40 fW will heat up by about 3 µK (Fig. 1). Suc...
The fractional quantum Hall effect is a canonical example of topological phases. While electric currents flow downstream in edge modes, neutral edge modes, observed only in hole-conjugate states and in n ¼ 5/2, flow upstream. It is believed that the latter transport results from multiple counter-propagating channels-mixed by disorder that is accompanied by Coulomb interaction. Here we report on sensitive shot noise measurements that reveal unexpected presence of neutral modes in non-hole-conjugate fractional states; however, not in the integer states. Furthermore, the incompressible bulk is also found to allow energy transport. While density reconstructions along the edge may account for the energy carrying edge modes, the origin of the bulk energy modes is unidentified. The proliferation of neutral modes changes drastically the accepted transport picture of the fractional quantum Hall effects. Their apparent ubiquitous presence may explain the lack of interference of fractional quasiparticles-preventing observation of fractional statistics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.