The goal of this research was to identify quantitative trait loci (QTLs) for potato tuber resistance to the soil‐ and seedborne bacterium Dickeya solani and for tuber starch content, to study the relationship between these traits. A resistant diploid hybrid of potato, DG 00‐270, was crossed with a susceptible hybrid, DG 08‐305, to generate the F1 mapping population. Tubers that were wound‐inoculated with bacteria were evaluated for disease severity, expressed as the mean weight of rotted tubers, and disease incidence, measured as the proportion of rotten tubers. Diversity array technology (DArTseq) was used for genetic map construction and QTL analysis. The most prominent QTLs for disease severity and incidence were identified in overlapping regions on potato chromosome IV and explained 22.4% and 22.9% of the phenotypic variance, respectively. The second QTL for disease severity was mapped to chromosome II and explained 16.5% of the variance. QTLs for starch content were detected on chromosomes III, V, VI, VII, VIII, IX, XI, and XII in regions different from the QTLs for soft rot resistance. Two strong and reproducible QTLs for resistance to D. solani on potato chromosomes IV and II might be useful for further study of candidate genes and marker development in potato breeding programmes. The relationship between tuber resistance to bacteria and the starch content in potato tubers was not confirmed by QTL mapping, which makes the selection of genotypes highly resistant to soft rot with a desirable starch content feasible.
Summary Knowledge of the immune mechanisms responsible for viral recognition is critical for understanding durable disease resistance and successful crop protection. We determined how potato virus Y (PVY) coat protein (CP) is recognised by Rysto, a TNL immune receptor. We applied structural modelling, site‐directed mutagenesis, transient overexpression, co‐immunoprecipitation, infection assays and physiological cell death marker measurements to investigate the mechanism of Rysto–CP interaction. Rysto associates directly with PVY CP in planta that is conditioned by the presence of a CP central 149 amino acids domain. Each deletion that affects the CP core region impairs the ability of Rysto to trigger defence. Point mutations in the amino acid residues Ser125, Arg157, and Asp201 of the conserved RNA‐binding pocket of potyviral CP reduce or abolish Rysto binding and Rysto‐dependent responses, demonstrating that appropriate folding of the CP core is crucial for Rysto‐mediated recognition. Rysto recognises the CPs of at least 10 crop‐damaging viruses that share a similar core region. It confers immunity to plum pox virus and turnip mosaic virus in both Solanaceae and Brassicaceae systems, demonstrating potential utility in engineering virus resistance in various crops. Our findings shed new light on how R proteins detect different viruses by sensing conserved structural patterns.
Soft rot is a bacterial disease that causes heavy losses in potato production worldwide. The goal of this study was to identify quantitative trait loci (QTLs) for potato tuber resistance to bacterium Dickeya solani and for tuber starch content to study the relationship between these traits. A highly resistant diploid hybrid of potato was crossed with a susceptible hybrid to generate the F1 mapping population. Tubers that were wound-inoculated with bacteria were evaluated for disease severity expressed as the mean weight of rotted tubers, and disease incidence measured as the proportion of rotten tubers. Diversity array technology (DArTseq) was used for genetic map construction and QTLs analysis. The most prominent QTLs for disease severity and incidence were identified in overlapping regions on potato chromosome IV and explained 22.4% and 22.9% of the phenotypic variance, respectively. The second QTL for disease severity was mapped to chromosome II and explained 16.5% of the variance. QTLs for starch content were detected on chromosomes III, V, VI, VII, VIII, IX, XI, and XII in regions different than the QTLs for soft rot resistance. Two strong and reproducible QTLs for resistance to Dickeya solani on potato chromosomes IV and II might be useful for further study of candidate genes and marker development in potato breeding programs. The relationship between tuber resistance to bacteria and the starch content in potato tubers was not confirmed by QTL mapping, which makes the selection of genotypes highly resistant to soft rot with a desirable starch content feasible.
Dickeya and Pectobacterium species are the causal agents of blackleg and soft rot diseases. This article explores the possibility of using the glycoalkaloids (GAs) naturally produced by the potato tuber after the greening process as a blackleg control method. We first tested the effect of GAs extracted from four potato cultivars on the growth and viability of one Dickeya and one Pectobacterium strain in growth media. Then, four years of field experiments were performed in which the incidence of blackleg was assessed in plants grown from the seed tubers of cv. Agria that were subjected to various greening treatments. In the growth media, all GAs isolated from the four cultivars appeared to be bacteriostatic and bactericidal against both bacteria strains. The inhibitory effect varied among GAs from different cultivars. Except for a one-year field trial, the blackleg incidence was lower in plants grown from green seed tubers without the yield being affected. The blackleg control was marginal, probably due to the low production of GAs by the tubers of cv. Agria after greening. Based on our findings, seed tuber greening has a good potential for blackleg control after the identification of varieties that present optimal GA composition after greening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.