When it comes to air pollution complaints, odours are often the most significant contributor. Sources of odour emissions range from natural to anthropogenic. Mitigation of odour can be challenging, multifaceted, site-specific, and is often confounded by its complexity—defined by existing (or non-existing) environmental laws, public ordinances, and socio-economic considerations. The objective of this paper is to review and summarise odour legislation in selected European countries (France, Germany, Austria, Hungary, the UK, Spain, the Netherlands, Italy, Belgium), North America (the USA and Canada), and South America (Chile and Colombia), as well as Oceania (Australia and New Zealand) and Asia (Japan, China). Many countries have incorporated odour controls into their legislation. However, odour-related assessment criteria tend to be highly variable between countries, individual states, provinces, and even counties and towns. Legislation ranges from (1) no specific mention in environmental legislation that regulates pollutants which are known to have an odour impact to (2) extensive details about odour source testing, odour dispersion modelling, ambient odour monitoring, (3) setback distances, (4) process operations, and (5) odour control technologies and procedures. Agricultural operations are one specific source of odour emissions in rural and suburban areas and a model example of such complexities. Management of agricultural odour emissions is important because of the dense consolidation of animal feeding operations and the advance of housing development into rural areas. Overall, there is a need for continued survey, review, development, and adjustment of odour legislation that considers sustainable development, environmental stewardship, and socio-economic realities, all of which are amenable to a just, site-specific, and sector-specific application.
Odours present in new Tedlar bags can impact the assessment of emissions from sewer collection systems and wastewater treatment plants. Conditioning protocols are needed to minimise the impact of background materials emissions on the sampling and assessment of odourous emissions. Olfactometry analysis has shown that background odour concentrations for new Tedlar bags can be as high as 130 OU(E)/m(3). Experimental studies were undertaken to investigate the impact of different conditioning temperatures in order to determine the optimum temperature for cleaning new Tedlar bags to a level when no detectable odours were present in the sampling bags via dilution olfactometry. For the purpose of this study, new Tedlar bags were cleaned in a temperature-controlled oven that had a constant filtered air flow-rate. From the analysis of odour and volatile organic compounds (VOCs) concentrations found in new Tedlar bags during the cleaning process, it was observed that odour and VOCs concentrations decreased with time. It was also found that the temperature setting plays a significant role in the cleaning of the Tedlar bags as large concentrations of phenols and acetamide, N,N-dimethyl were found in new Tedlar bags and their concentrations decreased following the temperature pre-conditioning.
This paper will demonstrate the differences found in odour test results, when odour sampling is performed at the same sources by two different consultants. By examining two case studies, this paper will highlight that the difference between the results can be significant. Both studies are based on odour sampling programs determining the odour removal efficiency of odour control units installed at two different facilities: a pet food facility and an oil/grease recycling facility. The first study is based on odour measurements at the inlet and outlet of the unit installed by Applied Plasma Physics AS at the pet food facility. Odour assessments were performed by two separate consultants at the same time. The second study is based on testing of the odour removal effectiveness of two units: a scrubber and a biofilter at an oil/grease recycling facility. During this study two odour sampling programs were performed by two consultants at different times, but under the same process conditions. This paper will show how varying results can play a role in choosing the adequate odour control technologies. The final results suggest that although, an odour control unit may appear to be insufficient, it actually is successful at removing the odours.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.