Objective: Rare disease Background: Chryseobacterium gleum (C. gleum) is a rare but concerning device-associated infection that can cause urinary tract infections and pneumonia. It produces a biofilm and has intrinsic resistance to a wide array of broadspectrum agents. Risk factors include neonate or immunocompromised states, intensive care unit admission for more than 21 days, broad-spectrum antibiotic exposure, indwelling devices, and mechanical ventilation. Case Report: A 61-year-old cachectic man presented in the United States with community-acquired pneumonia and immediately decompensated, requiring ventilator support. Despite starting broad-spectrum antibiotics, the patient developed fever, leukocytosis, and additional desaturation episodes. The patient's respiratory culture grew numerous C. gleum and few Stenotrophomonas (Xanthomonas) maltophilia. He also had a positive urine streptococcal pneumonia antigen. Broad-spectrum agents were discontinued after prolonged treatment due to a continued worsening clinical picture, and the patient was started on trimethoprim-sulfamethoxazole to cover C. gleum. The patient showed rapid clinical improvement on trimethoprim-sulfamethoxazole, with resolution of symptoms on post-discharge follow-up. Conclusions: To the best of our knowledge, this is the first case report of a documented case of a patient with C. gleum respiratory infection successfully treated solely with trimethoprim-sulfamethoxazole. The expedient identification of C. gleum is essential for proper treatment. The literature has consistently shown isolated respiratory C. gleum strains to be largely susceptible to fluoroquinolones, piperacillin-tazobactam, or trimethoprim-sulfamethoxazole.
IntroductionResults from recent studies have suggested a role for protease inhibitors in altering mechanisms involved in the initiation and proliferation of cancer cells. One such inhibitor, indinavir, may act as an anti-cancer agent by modulating the alpha-7-nicotinic acetylcholine receptor, which is a pro-carcinogenic protein that has been researched in conjunction with nicotine in lung cancer development. In our study, we compare indinavir's binding affinity towards α7-nAchR and MMP-2, another promoter of malignancy, to determine what extracellular effects the drug has before being internalized to inhibit HIV-1 protease.MethodsA computer program, PyRx, was used to compare indinavir's binding affinity with digital models for α7-nAchR, MMP-2 and HIV-1 protease, which were then compared to the results of in vitro binding assays for these targets.ResultsPyRx testing predicted the highest binding affinity values for indinavir to MMP-2 (mean = 8.77 kcal/mol, S.D. = 0.29), followed by the α7-nAchR (mean = 8.53 kcal/mol, S.D. = 0.15) and HIV-1 protease (mean = 7.5 kcal/mol, S.D. = 0.44). In vitro, indinavir's mean percent inhibition of control values were 103.2 for HIV-1 protease, 5.3 for MMP-2, and 7.7 for the α7-nAchR.ConclusionsBinding affinity values for indinavir to MMP-2 and α7-nAchR were not significantly different. Using PyRx to predict affinity compared with in vitro testing did not yield comparable results. However, indinavir was shown to slightly inhibit both α7-nAchR and MMP-2, which may have ramifications in the drug's delivery to the intracellularly located HIV-1 protease.
Figure 1. Forest plot of symptoms (A) and autoimmune conditions (B) in gender based-celiac disease patients. All P-values are , 0.0001 unless stated otherwise. Univariate analysis used to
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.