Aim: General movement assessment requires substantial expertise for accurate visual interpretation. Our aim was to evaluate an automated pose estimation method, using conventional video records, to see if it could capture infant movements using objective biomarkers.
Myoclonus in progressive myoclonus epilepsy type 1 (EPM1) patients shows marked variability, which presents a substantial challenge in devising treatment and conducting clinical trials. Consequently, fast and objective myoclonus quantification methods are needed. Methods: Ten video-recorded unified myoclonus rating scale (UMRS) myoclonus with action tests were performed on EPM1 patients who were selected for the development and testing of the automatic myoclonus quantification method. Human pose and body movement analyses of the videos were used to identify body keypoints and further analyze movement smoothness and speed. The automatic myoclonus rating scale (ARMS) was developed. It included the jerk count during movement score and the log dimensionless jerk (LDLJ) score to evaluate changes in the smoothness of movement. Results: The scores obtained with the automatic analyses showed moderate to strong significant correlation with the UMRS myoclonus with action scores. The jerk count of the primary keypoints and the LDLJ scores were effective in the evaluation of the myoclonic jerks during hand movements. They also correlated moderately to strongly with the total UMRS test panel scores (r 2 = 0,77, P = 0,009 for the jerk count score and r 2 = 0,88, P = 0,001 for the LDLJ score). The automatic analyses was weaker in quantification of the neck, trunk, and leg myoclonus. Conclusion: Automatic quantification of myoclonic jerks using human pose and body movement analysis of patients' videos is feasible and was found to be quite consistent with the accepted clinical gold standard quantification method. Based on the results of this study, the automatic analytical method should be further developed and validated to improve myoclonus severity follow-up for EPM1 patients.
We present contactless technology measuring abnormal ventilation and compare it with polysomnography (PSG). A 13-years old girl with Pitt-Hopkins syndrome presented hyperpnoea periods with apneic spells. The PSG was conducted simultaneously with Emfit movement sensor (Emfit, Finland) and video camera with depth sensor (NEL, Finland). The respiratory efforts from PSG, Emfit sensor, and NEL were compared. In addition, we measured daytime breathing with tracheal microphone (PneaVox,France). The aim was to deepen the knowledge of daytime hyperpnoea periods and ensure that no upper airway obstruction was present during sleep. The signs of upper airway obstruction were not detected despite of minor sleep time. Monitoring respiratory effort with PSG is demanding in all patient groups. The used unobtrusive methods were capable to reveal breathing frequency and hyperpnoea periods. Every day diagnostics need technology like this for monitoring vital signs at hospital wards and at home from subjects with disabilities and co-operation difficulties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.