Multiagent Reinforcement Learning (RL) solves complex tasks that require coordination with other agents through autonomous exploration of the environment. However, learning a complex task from scratch is impractical due to the huge sample complexity of RL algorithms. For this reason, reusing knowledge that can come from previous experience or other agents is indispensable to scale up multiagent RL algorithms. This survey provides a unifying view of the literature on knowledge reuse in multiagent RL. We define a taxonomy of solutions for the general knowledge reuse problem, providing a comprehensive discussion of recent progress on knowledge reuse in Multiagent Systems (MAS) and of techniques for knowledge reuse across agents (that may be actuating in a shared environment or not). We aim at encouraging the community to work towards reusing all the knowledge sources available in a MAS. For that, we provide an in-depth discussion of current lines of research and open questions.
This paper presents a novel class of algorithms, called Heuristically-Accelerated Multiagent Reinforcement Learning (HAMRL), which allows the use of heuristics to speed up well-known multiagent reinforcement learning (RL) algorithms such as the Minimax-Q. Such HAMRL algorithms are characterized by a heuristic function, which suggests the selection of particular actions over others. This function represents an initial action selection policy, which can be handcrafted, extracted from previous experience in distinct domains, or learnt from observation. To validate the proposal, a thorough theoretical analysis proving the convergence of four algorithms from the HAMRL class (HAMMQ, HAMQ(λ), HAMQS, and HAMS) is presented. In addition, a comprehensive systematical evaluation was conducted in two distinct adversarial domains. The results show that even the most straightforward heuristics can produce virtually optimal action selection policies in much fewer episodes, significantly improving the performance of the HAMRL over vanilla RL algorithms.
This paper investigates how to make improved action selection for online policy learning in robotic scenarios using reinforcement learning (RL) algorithms. Since finding control policies using any RL algorithm can be very time consuming, we propose to combine RL algorithms with heuristic functions for selecting promising actions during the learning process. With this aim, we investigate the use of heuristics for increasing the rate of convergence of RL algorithms and contribute with a new learning algorithm, Heuristically Accelerated Q-learning (HAQL), which incorporates heuristics for action selection to the Q-Learning algorithm. Experimental results on robot navigation show that the use of even very simple heuristic functions results in significant performance enhancement of the learning rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.