Duckweeds (Lemnaceae species) are extensively used models in ecotoxicology, and chlorophyll fluorescence imaging offers a sensitive and high throughput platform for phytotoxicity assays with these tiny plants. However, the vast number of potentially applicable chlorophyll fluorescence-based test endpoints makes comparison and generalization of results hard among different studies. The present study aimed to jointly measure and compare the sensitivity of various chlorophyll fluorescence parameters in Spirodela polyrhiza (giant duckweed) plants exposed to nickel, chromate (hexavalent chromium) and sodium chloride for 72 h, respectively. The photochemistry of Photosystem II in both dark- and light-adapted states of plants was assessed via in vivo chlorophyll fluorescence imaging method. Our results indicated that the studied parameters responded with very divergent sensitivity, highlighting the importance of parallelly assessing several chlorophyll fluorescence parameters. Generally, the light-adapted parameters were more sensitive than the dark-adapted ones. Thus, the former ones might be the preferred endpoints in phytotoxicity assays. Fv/Fm, i.e., the most extensively reported parameter literature-wise, proved to be the least sensitive endpoint; therefore, future studies might also consider reporting Fv/Fo, as its more responsive analogue. The tested toxicants induced different trends in the basic chlorophyll fluorescence parameters and, at least partly, in relative proportions of different quenching processes, suggesting that a basic distinction of water pollutants with different modes of action might be achievable by this method. We found definite hormetic patterns in responses to several endpoints. Hormesis occurred in the concentration ranges where the applied toxicants resulted in strong growth inhibition in longer-term exposures of the same duckweed clone in previous studies. These findings indicate that changes in the photochemical efficiency of plants do not necessarily go hand in hand with growth responses, and care should be taken when one exclusively interprets chlorophyll fluorescence-based endpoints as general proxies for phytotoxic effects.
In this study germination of Spirodela polyrhiza (L.) Schleiden (giant duckweed) turions was assessed under cadmium exposure to test applicability of a novel turion-based ecotoxicology method. Floating success of germinating turions, protrusion of the first and subsequent fronds as test endpoints were investigated and compared to results of standard duckweed growth inhibition tests with fronds of the same species. Our results indicate that turions can be used to characterize effects of toxic substances. Initial phase of turion germination (floating up and appearance of the first frond) was less sensitive to Cd treatments than the subsequent frond production. The calculated effective concentrations for growth rates in turion and normal frond tests were similar. Single frond area produced by germinating turions proved to be the most sensitive test endpoint. Single frond area and colony disintegration as additionally measured parameters in normal frond cultures also changed due to Cd treatments but the sensitivity of these parameters was lower than that of growth rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.