The cerebellum is crucial for sensorimotor coordination. The cerebellar architecture not only requires proper development but also long-term integrity to ensure accurate functioning. Developmental defects such as impaired neuronal migration or neurodegeneration are thus detrimental to the cerebellum and can result in movement disorders including ataxias. In this study, we identify FBXO41 as a novel CNS-specific F-box protein that localizes to the centrosome and the cytoplasm of neurons and demonstrate that cytoplasmic FBXO41 promotes neuronal migration. Interestingly, deletion of the FBXO41 gene results in a severely ataxic gait in mice, which show delayed neuronal migration of granule neurons in the developing cerebellum in addition to deformities and degeneration of the mature cerebellum. We show that FBXO41 is a critical factor, not only for neuronal migration in the cerebellum, but also for its long-term integrity.
Neuronal health is essential for the long-term integrity of the brain. In this study, we characterized the novel E3 ubiquitin ligase ring finger protein 157 (RNF157), which displays a brain-dominant expression in mouse. RNF157 is a homolog of the E3 ligase mahogunin ring finger-1, which has been previously implicated in spongiform neurodegeneration. We identified RNF157 as a regulator of survival in cultured neurons and established that the ligase activity of RNF157 is crucial for this process. We also uncovered that independently of its ligase activity, RNF157 regulates dendrite growth and maintenance. We further identified the adaptor protein APBB1 (amyloid beta precursor protein-binding, family B, member 1 or Fe65) as an interactor and proteolytic substrate of RNF157 in the control of neuronal survival. Here, the nuclear localization of Fe65 together with its interaction partner RNA-binding protein SART3 (squamous cell carcinoma antigen recognized by T cells 3 or Tip110) is crucial to trigger apoptosis. In summary, we described that the E3 ligase RNF157 regulates important aspects of neuronal development. Cell Death and Differentiation (2015) 22, 626-642; doi:10.1038/cdd.2014.163; published online 24 October 2014Neurodegeneration leads to loss of neurons and thus to severe and irreparable damage of the brain. A common histopathological feature in postmortem brains of patients with neurodegenerative diseases such as Parkinson's or Alzheimer's disease is the presence of ubiquitin-laden protein deposits.1-3 These deposits implicate the ubiquitin proteasome system (UPS) in neurodegeneration. In addition to histopathological clues, genetic evidence demonstrates that erroneous UPS components have detrimental effects on the developing and adult brain resulting in neurodegenerative disorders. 4,5The UPS is responsible for the posttranslational modification of proteins by ubiquitin, which requires an enzymatic cascade. 6 The E3 ubiquitin ligases specifically recognize the substrate proteins and mediate their ubiquitination, which can result in their degradation that ensures the homeostasis in cells or in non-proteolytic signaling events. 7,8 The largest group of E3 ligases constitutes the RING (really interesting new gene) ligases, which serve as scaffold proteins to recruit both the substrate and the E2 ubiquitin-conjugating enzyme that binds to the RING domain, 9 facilitating the transfer of ubiquitin from the E2 to the substrate.Although there are several hundred E3 ligases, 10 only a few have been studied so far in the context of neuronal survival or neurodegeneration.11-15 Among those, mahogunin ring finger-1 (MGRN1) has been implicated in an age-dependent spongiform encephalopathy characterized in a mouse model. 15In this study, we characterized the novel E3 ubiquitin ligase ring finger protein 157 (RNF157), the homolog of MGRN1. We described that RNF157, which is predominantly expressed in the brain, regulates neuronal survival and morphology in cultured neurons. We further identified the adaptor protein APBB1 ...
Developmental events in the brain including neuronal morphogenesis and migration are highly orchestrated processes. In vitro and in vivo analyses allow for an in-depth characterization to identify pathways involved in these events. Cerebellar granule neurons (CGNs) that are derived from the developing cerebellum are an ideal model system that allows for morphological analyses. Here, we describe a method of how to genetically manipulate CGNs and how to study axono-and dendritogenesis of individual neurons. With this method the effects of RNA interference, overexpression or small molecules can be compared to control neurons. In addition, the rodent cerebellar cortex is an easily accessible in vivo system owing to its predominant postnatal development. We also present an in vivo electroporation technique to genetically manipulate the developing cerebella and describe subsequent cerebellar analyses to assess neuronal morphology and migration. Video LinkThe video component of this article can be found at
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.