Copper (Cu) is an essential microelement found in all living organisms with the unique ability to adopt two different redox states—in the oxidized (Cu2+) and reduced (Cu+). It is required for survival and serves as an important catalytic cofactor in redox chemistry for proteins that carry out fundamental biological functions, important in growth and development. The deficit of copper can result in impaired energy production, abnormal glucose and cholesterol metabolism, increased oxidative damage, increased tissue iron (Fe) accrual, altered structure and function of circulating blood and immune cells, abnormal neuropeptides synthesis and processing, aberrant cardiac electrophysiology, impaired myocardial contractility, and persistent effects on the neurobehavioral and the immune system. Increased copper level has been found in several disorders like e.g.: Wilson’s disease or Menke’s disease. New findings with the great potential for impact in medicine include the use of copper-lowering therapy for antiangiogenesis, antifibrotic and anti-inflammatory purposes. The role of copper in formation of amyloid plaques in Alzheimer’s disease, and successful treatment of this disorder in rodent model by copper chelating are also of interest. In this work we will try to describe essential aspects of copper in chosen diseases. We will represent the evidence available on adverse effect derived from copper deficiency and copper excess. We will try to review also the copper biomarkers (chosen enzymes) that help reflect the level of copper in the body.
Betulin, a pentacyclic triterpene and a plant pentacyclic triterpene metabolite, can be found in large quantities in the outer bark of the birches (Betula, Betulaceae). Betulinic acid, obtained by betulin oxidation, is also abundantly present in nature. Both compounds show a wide spectrum of biological and pharmacological properties, such as anti-HIV, anti-inflammatory, and, considered the most important, anti-cancer. Although the specific mechanism of action of betulin against malignant cells is still a subject of detailed research, the activity of betulin acid has been linked to the induction of the intrinsic pathway of apoptosis. As this process occurs with the sparing of non-cancer cells, and the induction of apoptosis can occur under conditions in which standard therapies fail, both substances seem as promising experimental anti-cancer drugs. The aim of this review is to comprehensively summarise the potential of betulin and betulinic acid, both in vitro and in vivo. The discovery, structure, organic synthesis and derivatives forming were shortly described. Also, the potential molecular mechanisms of action and numerous medical applications of betulin and betulinic acid were presented, including previous studies of anti-cancer activity of the compounds, with listed cancer cell types susceptible to therapy.
Umbilical cord blood collected from the postpartum placenta and cord is a rich source of hematopoietic stem cells (HSCs) and is an alternative to bone marrow transplantation. In this review we wanted to describe the differences (in phenotype, cytokine production, quantity and quality of cells) between stem cells from umbilical cord blood, bone marrow and peripheral blood. HSCs present in cord blood are more primitive than their counterparts in bone marrow or peripheral blood, and have several advantages including high proliferation. With using proper cytokine combination, HSCs can be effectively developed into different cell lines. This process is used in medicine, especially in hematology.
(2016) Novel synthesis scheme and invitro antimicrobial evaluation of a panel of (E)-2-aryl-1-cyano-1-nitroethenes, Journal of Enzyme Inhibition and Medicinal Chemistry, 31:6, 900-907, DOI: 10.3109/14756366.2015 AbstractDrug resistance has become a major concern in the field of infection management, therefore searching for new antibacterial agents is getting more challenging. Our study presents an optimized and eco-friendly synthesis scheme for a panel of nitroalkenes bearing various functional groups in the aromatic moiety and bromine or cyano substituents in 1 position of nitrovinyl moiety. The presence of nitrolefine group outside the ring minimalizes genotoxic properties while conjugation of aryl group with nitrovinyl moiety increases stability of the compounds. Then our research focused on evaluation of biological properties of such obtained (E)-2-aryl-1-cyano-1-nitroethenes. As they exhibit strong bacteriostatic and bactericidal activities against reference bacteria and yeast species with no detectable cytotoxicity towards cultured human HepG2 and HaCaT cells, they could be promising candidates for the replacement of traditional nitrofurane-containing antibacterial drugs. Nevertheless, validation of the obtained data in an in vivo model and additional safety studies on mutagenicity are still required.
Introduction. Terpenes are the largest known class of organic compounds, widely distributed in plants. They are grouped considering the number of isoprene units in their structure; hence, the group consisting of 30 carbon atoms is called triterpenes. These compounds have a wide range of biological features. Objective. The aim of this review was to comprehensively discuss the role of betulin and betulinic acid as potent anticancer agents, including various studies determining their efficiency in cancer treatment and enumerating the types of cancer susceptible to this kind of therapy. State of knowledge. Betulin is a naturally occurring lupane-type pentacyclic triterpene, wildly distributed in plants, especially Betulinaceae. One of its derivatives, formed by oxidation, is betulinic acid. Both compounds are abundantly present in the outer bark of white birch, with betulin forming up to 34% its dry mass and are known for their valuable biological properties, including anti-cancer effect. By inducing the internal apoptosis pathway in cancer cells while sparing normal cells, they are a great help in the treatment of most malignancies, alone or in combination with radio-or chemotherapy. Summary. Compounds that have a direct effect on mitochondria are promising experimental anticancer drugs, since they are able to cause cell death in conditions in which conventional therapies, including chemotherapeutics, usually fail. Therefore, mitochondrial targeting agents such as betulin and betulinic acid are a promise of a new therapeutic strategy for the treatment of human tumours.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.