Honeybees products comprise of numerous substances, including propolis, bee pollen, and royal jelly, which have long been known for their medicinal and health-promoting properties. Their wide biological effects have been known and used since antiquity. Bee products are considered to be a potential source of natural antioxidants such as flavonoids, phenolic acids, or terpenoids. Nowadays, the still growing concern in natural substances capable of counteracting the effects of oxidative stress underlying the pathogenesis of numerous diseases, such as neurodegenerative disorders, cancer, diabetes, and atherosclerosis, as well as negative effects of different harmful factors and drugs, is being observed. Having regarded the importance of acquiring drugs from natural sources, this review is aimed at updating the current state of knowledge of antioxidant capacity of selected bee products, namely, propolis, bee pollen, and royal jelly, and of their potential antioxidant-related therapeutic applications. Moreover, the particular attention has been attributed to the understanding of the mechanisms underlying antioxidant properties of bee products. The influence of bee species, plant origin, geographic location, and seasonality as well as type of extraction solutions on the composition of bee products extracts were also discussed.
Copper (Cu) is an essential microelement found in all living organisms with the unique ability to adopt two different redox states—in the oxidized (Cu2+) and reduced (Cu+). It is required for survival and serves as an important catalytic cofactor in redox chemistry for proteins that carry out fundamental biological functions, important in growth and development. The deficit of copper can result in impaired energy production, abnormal glucose and cholesterol metabolism, increased oxidative damage, increased tissue iron (Fe) accrual, altered structure and function of circulating blood and immune cells, abnormal neuropeptides synthesis and processing, aberrant cardiac electrophysiology, impaired myocardial contractility, and persistent effects on the neurobehavioral and the immune system. Increased copper level has been found in several disorders like e.g.: Wilson’s disease or Menke’s disease. New findings with the great potential for impact in medicine include the use of copper-lowering therapy for antiangiogenesis, antifibrotic and anti-inflammatory purposes. The role of copper in formation of amyloid plaques in Alzheimer’s disease, and successful treatment of this disorder in rodent model by copper chelating are also of interest. In this work we will try to describe essential aspects of copper in chosen diseases. We will represent the evidence available on adverse effect derived from copper deficiency and copper excess. We will try to review also the copper biomarkers (chosen enzymes) that help reflect the level of copper in the body.
Vitamin C (Vit C) is considered to be a vital antioxidant molecule in the brain. Intracellular Vit C helps maintain integrity and function of several processes in the central nervous system (CNS), including neuronal maturation and differentiation, myelin formation, synthesis of catecholamine, modulation of neurotransmission and antioxidant protection. The importance of Vit C for CNS function has been proven by the fact that targeted deletion of the sodium-vitamin C co-transporter in mice results in widespread cerebral hemorrhage and death on post-natal day one. Since neurological diseases are characterized by increased free radical generation and the highest concentrations of Vit C in the body are found in the brain and neuroendocrine tissues, it is suggested that Vit C may change the course of neurological diseases and display potential therapeutic roles. The aim of this review is to update the current state of knowledge of the role of vitamin C on neurodegenerative diseases including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, multiple sclerosis and amyotrophic sclerosis, as well as psychiatric disorders including depression, anxiety and schizophrenia. The particular attention is attributed to understanding of the mechanisms underlying possible therapeutic properties of ascorbic acid in the presented disorders.
Selenium is a trace element which fulfils important functions in the organism. Its deficit may cause acute disorders, but an overdose can also lead to severe consequences. The functions of selenium in the organism are mainly connected with its antioxidant properties, as it is an essential part of important antioxidant enzymes. Disturbances of oxidant balance have been found to be involved in the activity of numerous harmful factors as well as in the pathogenesis of diverse illnesses. Selenium administration has proved to be effective against the toxicity of many agents and the side effects of drugs. However, the narrow range between therapeutic and toxic doses of selenium, as well as the dependence of its effect on the applied form, dose and method of treatment, makes the choice of the most effective supplement a very complex issue. Divergent forms of selenium are still being studied, including both inorganic and organic compounds as well as Se-enriched natural products. The newest research has also involved selenium nanoparticles. The aim of this review is to present the great potential of selenium for protecting the organism against a wide variety of environmental pollutants, drugs and physical factors.
BackgroundEach year approximately 6,000 new cases of head and neck cancer are registered in Poland. Human papillomavirus (HPV) and Epstein-Barr virus (EBV) have been associated with tumour formation. Cytokines have been shown to play an important role both in inflammation and carcinogenesis and they can be detected in saliva and serum with ELISA assays. Salivary biomarkers may be used as markers of early cancer detection.The aim of this study was the analysis of the serum and salivary levels of IL-10, TNF-α, TGF-β and VEGF in patients with oropharyngeal cancer and in healthy individuals. The level of these biomarkers was also analyzed in HPV- and EBV-related cases.MethodsThe study involved 78 patients with histopathologically confirmed oropharyngeal squamous cell carcinoma and 40 healthy controls. Serum and salivary levels of IL-10, TNF-α, TGF-β and VEGF were analyzed both in patients and in healthy individuals by ELISA method using Diaclone SAS commercially available kits (France). EBV DNA was detected by the nested PCR for amplification of EBNA-2. HPV detection and genotyping was performed using the INNO-LiPA HPV Genotyping Extraassay (Innogenetics N. V, Gent, Belgium). The obtained results were subjected to statistical analysis using Mann–Whitney and Kruskal Wallis tests. Test values of p < 0.05 were considered statistically significant.ResultsThe level of tested cytokines was higher in patients than in controls both in serum (IL-10: 2.3 pg/ml vs 1.65 pg/ml, p = 0.0003; TGF-β: 11.3 ng/ml vs 7.8 ng/ml, p = 0.0005; VEGF: 614 pg/ml vs 210 pg/ml, p = 0.0004; TNF-α: 15.0 ng/ml vs 12.90 ng/ml, p = 0.1397) as well as in saliva (IL-10: 5.9 pg/ml vs 2.5 pg/ml, p = 0.00002; TGF-β: 24.1 ng/ml vs 14.8 ng/ml, p = 0.00002; VEGF: 4321 pg/ml vs 280 pg/ml, p = 0.0000; TNF-α: 23.1 ng/ml vs 11.3 ng/ml, p = 0.00002).EBV DNA was detected in 51.3 % of patients and 20 % of controls, HPV DNA was present in 30.8 % of patients and 2,5 % of controls.The level of IL-10 was statistically higher in patients infected with EBV, HPV and co-infected with EBV/HPV. The level of TNF-α was significantly higher in patients infected with EBV, while TGF-β in patients with HPV infection and EBV/HPV co-infection.ConclusionDetection of salivary cytokines may be very helpful in early diagnosis, treatment and prognosis of OSCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.