Reduce, reuse, reengineer! 2,5‐Dimethylphenol is of high interest for the production of temperature stable polymers (>500 K) and as a building block for “next‐generation” plastics. The presented reengineered P 450 BM 3 variant (R 47 S/Y 51 W/I 401 M) has a good catalytic activity (kcat=1950 min−1), excellent coupling efficiency (66 %), and selectivity (>98 %) for 2,5‐dimethylphenol production.
Protein re‐engineering by directed evolution has become a standard approach for tailoring enzymes in many fields of science and industry. Advances in screening formats and screening systems are fueling progress and enabling novel directed evolution strategies, despite the fact that the quality of mutant libraries can still be improved significantly. Diversity generation strategies in directed enzyme evolution comprise three options: (a) focused mutagenesis (selected residues are randomized); (b) random mutagenesis (mutations are randomly introduced over the whole gene); and (c) gene recombination (stretches of genes are mixed to chimeras in a random or rational manner). Either format has both advantages and limitations depending on the targeted enzyme and property. The quality of diverse mutant libraries plays a key role in finding improved mutants. In this review, we summarize methodological advancements and novel concepts (since 2009) in diversity generation for all three formats. Advancements are discussed with respect to the state of the art in diversity generation and high‐throughput screening capabilities, as well as robustness and simplicity in use. Furthermore, limitations and remaining challenges are emphasized ‘to get what we aim for’ through ‘optimal diversity’ generation.
Flow cytometry-based screening systems have successfully been used in directed evolution experiments. Herein, we report the first whole-cell, high-throughput screening platform for P450 monooxygenases based on flow cytometry. O-dealkylation of 7-benzoxy-3-carboxycoumarin ethyl ester (BCCE) by P450 BM3 generates a fluorescence coumarin derivative. After one round of directed evolution, P450 BM3 variants with up to 7-fold increased activity (P450 M3 DM-1: R255H) could be identified at a sampling rate of 500 events s −1 . The reported screening platform can likely be applied to directed evolution campaigns of any P450 monooxygenase that catalyzes the O-dealkylation of BCCE.
Diversity generation by random mutagenesis is often the first key step in directed evolution experiments and screening of 1,000-2,000 clones is in most directed evolution campaigns sufficient to identify improved variants. For experimentalists important questions such as how many positions are mutated in the targeted gene and what amino acid substitutions can be expected after screening of 1,000-2,000 clones are surprisingly not answered by a statistical analysis of mutant libraries. Therefore three random mutagenesis experiments (epPCR with a low- and a high-mutation frequency and a transversion-enriched sequence saturation mutagenesis method named SeSaM-Tv P/P) were performed on the lipase BSLA and in total 3,000 mutations were analyzed to determine the diversity in random mutagenesis libraries employed in directed evolution experiments. The active fraction of the population ranged from 15% (epPCR-high), to 52% (SeSaM-Tv P/P), and 55% (epPCR-low) which correlates well with the average number of amino acid substitutions per protein (4.1, 1.6 and 1.1). In the epPCR libraries transitions were the predominant mutations (>72%), and >82% of all mutations occurred at A- or T-nts. Consecutive nucleotide (nt) mutations were obtained only with a low fraction (2.8%) under highly error-prone conditions. SeSaM-Tv P/P was enriched in transversions (43%; >1.7-fold more than epPCR libraries), and consecutive nt mutations (30.5%; 11-fold more than epPCR-high). A high fraction of wild-type BSLA protein (33%) was found in the epPCR-low mutant library compared to 2% in epPCR-high and 13% in SeSaM-Tv P/P. An average of 1.8-1.9 amino acid substitutions per residue was obtained with epPCR-low and -high compared to 2.1 via SeSaM-Tv P/P. The chemical composition of the amino acid substitutions differed, however, significantly from the two epPCR methods to SeSaM-Tv P/P.
During the last decade, directed evolution has become a standard protein engineering strategy to reengineer proteins for industrial applications under high stress conditions (e.g., high temperature, extreme pH, ionic liquids, or organic solvents). The most commonly employed method for diversity generation to improve biocatalysts for these properties is random mutagenesis by error-prone polymerase chain reaction (epPCR). However, recent reports show that epPCR often fails to produce >70% of beneficial positions/amino acid exchanges which improve enzyme properties such as organic solvent or ionic liquid resistance. In this report, bsla (543 bp, small lipase gene from Bacillus subtilis) was divided into three fragments (147, 192, 204 bp). Each fragment was subjected to an epPCR with a high mutation load (22, 31, and 33 mutations per kb) in order to increase the number of identified beneficial positions while maintaining a fraction of active population which can efficiently be screened in agar plate or microtiter plate format. The use of this "casting epPCR" process termed as (cepPCR), doubles the number of identified beneficial positions (from 14% to 29%), when compared to standard epPCR for the BSLA enzyme model. A further increase to 39% of beneficial positions is obtainable through combination of cepPCR with the transversion biased sequence saturation mutagenesis (SeSaM) method. Furthermore, sequencing of up to 600 mutations per fragment provided valuable insights into the correlation of total throughput and number of identified beneficial positions as well as how an efficient balance of screening efforts to obtainable results can be achieved in directed evolution campaigns. Biotechnol. Bioeng. 2017;114: 1921-1927. © 2017 Wiley Periodicals, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.