BackgroundSocial media public health campaigns have the advantage of tailored messaging at low cost and large reach, but little is known about what would determine their feasibility as tools for inducing attitude and behavior change.ObjectiveThe aim of this study was to test the feasibility of designing, implementing, and evaluating a social media–enabled intervention for skin cancer prevention.MethodsA quasi-experimental feasibility study used social media (Twitter) to disseminate different message “frames” related to care in the sun and cancer prevention. Phase 1 utilized the Northern Ireland cancer charity’s Twitter platform (May 1 to July 14, 2015). Following a 2-week “washout” period, Phase 2 commenced (August 1 to September 30, 2015) using a bespoke Twitter platform. Phase 2 also included a Thunderclap, whereby users allowed their social media accounts to automatically post a bespoke message on their behalf. Message frames were categorized into 5 broad categories: humor, shock or disgust, informative, personal stories, and opportunistic. Seed users with a notable following were contacted to be “influencers” in retweeting campaign content. A pre- and postintervention Web-based survey recorded skin cancer prevention knowledge and attitudes in Northern Ireland (population 1.8 million).ResultsThere were a total of 417,678 tweet impressions, 11,213 engagements, and 1211 retweets related to our campaign. Shocking messages generated the greatest impressions (shock, n=2369; informative, n=2258; humorous, n=1458; story, n=1680), whereas humorous messages generated greater engagement (humorous, n=148; shock, n=147; story, n=117; informative, n=100) and greater engagement rates compared with story tweets. Informative messages, resulted in the greatest number of shares (informative, n=17; humorous, n=10; shock, n=9; story, n=7). The study findings included improved knowledge of skin cancer severity in a pre- and postintervention Web-based survey, with greater awareness that skin cancer is the most common form of cancer (preintervention: 28.4% [95/335] vs postintervention: 39.3% [168/428] answered “True”) and that melanoma is most serious (49.1% [165/336] vs 55.5% [238/429]). The results also show improved attitudes toward ultraviolet (UV) exposure and skin cancer with a reduction in agreement that respondents “like to tan” (60.5% [202/334] vs 55.6% [238/428]).ConclusionsSocial media–disseminated public health messages reached more than 23% of the Northern Ireland population. A Web-based survey suggested that the campaign might have contributed to improved knowledge and attitudes toward skin cancer among the target population. Findings suggested that shocking and humorous messages generated greatest impressions and engagement, but information-based messages were likely to be shared most. The extent of behavioral change as a result of the campaign remains to be explored, however, the change of attitudes and knowledge is promising. Social media is an inexpensive, effective method for delivering public health messages. How...
Social media channels, such as Facebook or Twitter, allow for people to express their views and opinions about any public topics. Public sentiment related to future events, such as demonstrations or parades, indicate public attitude and therefore may be applied while trying to estimate the level of disruption and disorder during such events. Consequently, sentiment analysis of social media content may be of interest for different organisations, especially in security and law enforcement sectors. This paper presents a new lexicon-based sentiment analysis algorithm that has been designed with the main focus on real time Twitter content analysis. The algorithm consists of two key components, namely sentiment normalisation and evidence-based combination function, which have been used in order to estimate the intensity of the sentiment rather than positive/negative label and to support the mixed sentiment classification process. Finally, we illustrate a case study examining the relation between negative sentiment of twitter posts related to English Defence League and the level of disorder during the organisation's related events.
The combination of multiple classifiers, commonly referred to as a classifier ensemble, has previously demonstrated the ability to improve classification accuracy in many application domains. As a result this area has attracted significant amount of research in recent years. The aim of this paper has therefore been to provide a state of the art review of the most well-known ensemble techniques with the main focus on bagging, boosting and stacking and to trace the recent attempts, which have been made to improve their performance. Within this paper, we present and compare an updated view on the different modifications of these techniques, which have specifically aimed to address some of the drawbacks of these methods namely the low diversity problem in bagging or the over-fitting problem in boosting. In addition, we provide a review of different ensemble selection methods based on both static and dynamic approaches. We present some new directions which have been adopted in the area of classifier ensembles from a range of recently published studies. In order to provide a deeper insight into the ensembles themselves a range of existing theoretical studies have been reviewed in the paper.
Application of sensor-based technology within activity monitoring systems is becoming a popular technique within the smart environment paradigm. Nevertheless, the use of such an approach generates complex constructs of data, which subsequently requires the use of intricate activity recognition techniques to automatically infer the underlying activity. This paper explores a cluster-based ensemble method as a new solution for the purposes of activity recognition within smart environments. With this approach activities are modelled as collections of clusters built on different subsets of features. A classification process is performed by assigning a new instance to its closest cluster from each collection. Two different sensor data representations have been investigated, namely numeric and binary. Following the evaluation of the proposed methodology it has been demonstrated that the cluster-based ensemble method can be successfully applied as a viable option for activity recognition. Results following exposure to data collected from a range of activities indicated that the ensemble method had the ability to perform with accuracies of 94.2% and 97.5% for numeric and binary data, respectively. These results outperformed a range of single classifiers considered as benchmarks.
Record linkage is a process of identifying records that refer to the same realworld entity. Many existing approaches to record linkage apply supervised machine learning techniques to generate a classification model that classifies a pair of records as either match or non-match. The main requirement of such an approach is a labelled training dataset. In many real-world applications no labelled dataset is available hence manual labelling is required to create a sufficiently sized training dataset for a supervised machine learning algorithm. Semisupervised machine learning techniques, such as self-learning or active learning, which require only a small manually labelled training dataset have been applied to record linkage. These techniques reduce the requirement on the manual labelling of the training dataset. However, they have yet to achieve a level of accuracy similar to that of supervised learning techniques. In this paper we propose a new approach to unsupervised record linkage based on a combination of ensemble learning and enhanced automatic self-learning. In the proposed approach an ensemble of automatic self-learning models is generated with different similarity measure schemes. In order to further improve the automatic self-learning process we incorporate field weighting into the automatic seed selection for each of the self-learning models. We propose an unsupervised diversity measure to ensure that there is high diversity among the selected self-learning models. Finally, we propose to use the contribution ratios of self-learning mod
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.