Withdrawal anxiety is a significant factor contributing to continued alcohol abuse in alcoholics. This anxiety is long-lasting, can manifest well after the overt physical symptoms of withdrawal, and is frequently associated with relapse in recovering alcoholics. The neurobiological mechanisms governing these withdrawal-associated increases in anxiety are currently unknown. The basolateral amygdala (BLA) is a major emotional center in the brain and regulates the expression of both learned fear and anxiety. Neurotransmitter system alterations within this brain region may therefore contribute to withdrawal-associated anxiety. Because evidence suggests that glutamate-gated neurotransmitter receptors are sensitive to acute ethanol exposure, we examined the effect of chronic intermittent ethanol (CIE) and withdrawal (WD) on glutamatergic synaptic transmission in the BLA. We found that slices prepared from CIE and WD animals had significantly increased contributions by synaptic NMDA receptors. In addition, CIE increased the amplitude of AMPA-receptor-mediated spontaneous excitatory postsynaptic currents (sEPSCs), whereas only WD altered the amplitude and kinetics of tetrodotoxin-resistant spontaneous events (mEPSCs). Similarly, the frequency of sEPSCs was increased in both CIE and WD neurons, although only WD increased the frequency of mEPSCs. These data suggest that CIE and WD differentially alter both pre- and postsynaptic properties of BLA glutamatergic synapses. Finally, we show that microinjection of the AMPA-receptor antagonist, DNQX, can attenuate withdrawal-related anxiety-like behavior. Together, our results suggest that increased glutamatergic function may contribute to anxiety expressed during withdrawal from chronic ethanol.
The DA uptake changes after chronic alcohol exposure documented here using FSCV may be associated with a compensatory response of the DA system aimed at decreasing DA signaling. Alterations in autoreceptor function may require relatively long lasting alcohol exposure.
The neurobiological mechanisms governing alcohol-induced alterations in anxiety-like behaviors are not fully understood. Given that the amygdala is a major emotional center in the brain and regulates the expression of both learned-fear and anxiety, neurotransmitter systems within the basolateral amygdala represent likely mechanisms governing the anxiety-related effects of acute ethanol exposure. It is well established that, within the glutamatergic system, N-methyl-D-aspartate (NMDA)-type receptors, are particularly sensitive to intoxicating concentrations of ethanol. However, recent evidence suggests that kainate-type glutamate receptors are sensitive to ethanol as well. Therefore, we examined the effect of acute ethanol on kainate receptor (KA-R)-mediated synaptic transmission in the basolateral amygdala (BLA) of Sprague Dawley rats. Acute ethanol decreased KA-R-mediated excitatory postsynaptic currents (EPSCs) in the BLA in a concentrationdependent manner. Ethanol also inhibited currents evoked by focal application of the kainate receptor agonist (R, S)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl) propanoic acid (ATPA), and ethanol inhibition of kainate EPSCs was not associated with a change in paired-pulse ratio, suggesting a postsynaptic mechanism of ethanol action. The neurophysiological consequences of this acute sensitivity were tested by measuring ethanol's effects on KA-R-dependent modulation of synaptic plasticity. Acute ethanol, like the GluR5-specific antagonist (RS)-3-(2-carboxybenzyl)willardiine (UBP 296), robustly diminished ATPA-induced increases in synaptic efficacy. Lastly, to better understand the relationship between KA-R activity and anxiety-like behavior, we bilaterally microinjected ATPA directly into the BLA. We observed an increase in measures of anxiety-like behavior, assessed in the light/dark box, with no change in locomotor activity. This evidence suggests that kainate receptors in the BLA are inhibited by pharmacologically relevant concentrations of ethanol and may contribute to some of the acute anxiolytic effects of this drug.
Withdrawal anxiety following chronic ethanol is often associated with relapse in recovering alcoholics. It is likely that brain regions regulating anxiety-like behaviors adapt during chronic ethanol to ultimately regulate such behaviors. The central amygdala contains numerous neurotransmitter systems that have been implicated in the regulation of anxiety-like behavior, including corticotropin releasing factor (CRF) and N-methyl-D-Aspartate (NMDA)-type glutamate receptors. Chronic ethanol exposure causes functional adaptations in both CRF and NMDA receptors that are likely to regulate anxiety-like behaviors expressed during withdrawal. However, the molecular mechanisms governing these adaptations remain un-explored. We therefore evaluated these neurotransmitter systems in Sprague-Dawley rats during chronic ingestion of an ethanolcontaining liquid diet. Quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) demonstrated that pre-proCRF mRNA was significantly up-regulated by chronic ethanol exposure while CRF binding protein mRNA expression did not change. There were also no significant changes observed in any of the NMDA subunit mRNAs, although there was a trend toward greater NR2A mRNA expression during chronic ethanol. Using Western blotting analysis we measured NMDA receptor subunit protein expression. Chronic ethanol exposure did not affect protein levels of the NR1 and NR2B subunits. Like the mRNA measures, chronic ethanol did influence NR2A protein levels but the effects were modest. Our results demonstrate that NMDA receptor subunit mRNA and protein expression are not strongly influenced by exposure to chronic ethanol. This suggests that the functional NMDA receptor adaptations identified by previous studies (Roberto et al., 2004) are likely to be mediated by post-translational events. In contrast, enhanced levels of CRF during/after chronic ethanol are likely to be mediated by increased levels of preproCRF mRNA. Together, our findings suggest that adaptations to chronic ethanol by pro-anxiety factors expressed in the central nucleus appear to be mediated by distinct cellular and molecular mechanisms.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.