Background
Determining the etiology and possible treatment strategies for numerous diseases requires a comprehensive understanding of compensatory mechanisms in physiological systems. The vagus nerve acts as a key interface between the brain and the peripheral internal organs. We set out to identify mechanisms compensating for a lack of neuronal communication between the immune and the central nervous system (CNS) during infection.
Methods
We assessed biochemical and central neurotransmitter changes resulting from subdiaphragmatic vagotomy and whether they are modulated by intraperitoneal infection. We performed a series of subdiaphragmatic vagotomy or sham operations on male Wistar rats. Next, after full, 30-day recovery period, they were randomly assigned to receive an injection of
Escherichia coli
lipopolysaccharide or saline. Two hours later, animal were euthanized and we measured the plasma concentration of prostaglandin E2 (with HPLC-MS), interleukin-6 (ELISA), and corticosterone (RIA). We also had measured the concentration of monoaminergic neurotransmitters and their metabolites in the amygdala, brainstem, hippocampus, hypothalamus, motor cortex, periaqueductal gray, and prefrontal medial cortex using RP-HPLC-ED. A subset of the animals was evaluated in the elevated plus maze test immediately before euthanization.
Results
The lack of immunosensory signaling of the vagus nerve stimulated increased activity of discrete inflammatory marker signals, which we confirmed by quantifying biochemical changes in blood plasma. Behavioral results, although preliminary, support the observed biochemical alterations. Many of the neurotransmitter changes observed after vagotomy indicated that the vagus nerve influences the activity of many brain areas involved in control of immune response and sickness behavior. Our studies show that these changes are largely eliminated during experimental infection.
Conclusions
Our results suggest that in vagotomized animals with blocked CNS, communication may transmit via a pathway independent of the vagus nerve to permit restoration of CNS activity for peripheral inflammation control.
BackgroundVagus nerve is one of the crucial routes in communication between the immune and central nervous systems. The impaired vagal nerve function may intensify peripheral inflammatory processes. This effect subsides along with prolonged recovery after permanent nerve injury. One of the results of such compensation is a normalized plasma concentration of stress hormone corticosterone – a marker of hypothalamic-pituitary-adrenal (HPA) axis activity. In this work, we strive to explain this corticosterone normalization by studying the mechanisms responsible for compensation-related neurochemical alterations in the hypothalamus.Materials and MethodsUsing microarrays and high performance liquid chromatography (HPLC), we measured genome-wide gene expression and major amino acid neurotransmitters content in the hypothalamus of bilaterally vagotomized rats, 1 month after surgery.ResultsOur results show that, in the long term, vagotomy affects hypothalamic amino acids concentration but not mRNA expression of tested genes.DiscussionWe propose an alternative pathway of immune to CNS communication after vagotomy, leading to activation of the HPA axis, by influencing central amino acids and subsequent monoaminergic neurotransmission.
Wymiana informacji pomiędzy wzbudzonym układem odpornościowym a ośrodkowym układem nerwowym (OUN) zapewnia utrzymanie stanu homeostazy organizmu. Jedną z głównych dróg odpowiedzialnych za wspomnianą komunikację jest droga humoralna. Reprezentują ją związki uwalniane przez komórki odpornościowe oraz uszkodzone tkanki. Cząsteczkami istotnie zaangażowanymi we wspomniany proces komunikacji są prostaglandyny, szczególnie prostaglandyna E2 (PGE2), powstająca w wyniku aktywności cyklooksygenaz. Posiada szereg właściwości umożliwiających penetrację barier organizmu, w tym bariery krew-mózg, co więcej w OUN potwierdzono obecność specyficznych dla niej receptorów. Za ich pośrednictwem, PGE2 moduluje aktywność układów neurotransmisyjnych w OUN, co w konsekwencji indukuje złożone mechanizmy odpornościowe organizmu. Ostatecznie dochodzi do skutecznej neutralizacji infekcji przy jednoczesnym hamowaniu aktywności nadmiernie wzbudzonego układu odpornościowego. Efekty wywoływane przez PGE2 ulegają osłabieniu lub całkowitemu zniesieniu poprzez zastosowanie określonych inhibitorów cyklooksygenaz. Niniejsza praca stanowi podsumowanie obecnych wiadomości dotyczących procesów wymiany informacji pomiędzy wzbudzonym układem odpornościowym a OUN za pośrednictwem PGE2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.