This paper presents the results of carbon nanoparticles (CNPs) production by infrared laser ablation of a graphite or a polycrystalline diamond target, submersed in one of two solvents, water or isopropanol. The targets were irradiated using a SPI fibre laser with a wavelength of 1064 nm being operated at different average powers. After laser-assisted synthesis of CNPs, the resulting colloids, i.e, particles in a liquid medium, were examined using the analytical techniques of dynamic light scattering, UV-Vis, Raman spectroscopy and fluorescence spectroscopy.The results show that the properties of CNPs strongly depend on processing conditions of the Liquid PhasePulsed Laser Ablation (LP-PLA) process. In particular, the size of nanoparticles produced are affected by the processing parameters of the laser ablation. The results show that the laser processing of a graphite target in deionised water and in isopropanol produces carbon nanoparticles with properties that are beneficial for various biochemical and biomedical applications.
The coating of nanoparticles on materials for medical application [e.g., the coating of Fe3O4 nanopowder (IONP) with a carbon nanolayer] serves to protect and modify the selected biological, physical, and chemical properties of the coated material. Increases in chemical stability, changes in biocompatibility, and a modified surface structure are examples of the effects caused by the formation of carbon coatings. In the current study, Fe3O4 nanoparticles were coated with a carbon nanolayer (IONP@C) in a plasmochemical reactor (using radio-frequency plasma-enhanced chemical vapor deposition methods) under various experimental conditions. Based on data from X-ray diffraction, Raman, and IR spectroscopy, the best processing parameters were determined in order to produce a carbon coating that would not change the structure of the IONP. The materials with the best cover, i.e., a uniform carbon nanolayer, were used in cytotoxic tests to investigate their biological properties using the human HepG2 hepatocarcinoma cell line and chicken embryo red blood cells as an in vitro model. The obtained results proved the low cytotoxicity of Fe3O4 micropowder and IONP in contrast to IONP@C, which reduced cell viability, increased hemolysis, and generally was more toxic than bare Fe3O4.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.