The sampling and analytical methods, along with available microorganisms, used for in situ hydrocarbon bioremediation are reviewed. Each treatment method is briefly described and its advantages and limitations pertaining to potential applications are evaluated. Bioremediation provides cost-effective, contaminant- and substrate-specific treatments equally successful in reducing the concentrations of single compounds or mixtures of biodegradable materials. In situ treatments rarely yield undesirable byproducts, but precautions and preliminary baseline tests are always recommended. Sampling methods should adhere to good laboratory and field practices and usually do not require highly trained personnel. Analytical methods vary in sensitivity, cost, duration of sample analysis and personnel training required. Voucher specimens of bacterial strains used in bioremediation exist in various repositories (e.g. ATCC, DSM, etc.) or are commercially available, and are usually covered by patent rights. Each one of these strains may yield spectacular results in vitro for specific target compounds. However, the overall success of such strains in treating a wide range of contaminants in situ remains limited. The reintroduction of indigenous microorganisms isolated from the contaminated site after culturing seems to be a highly effective bioremediation method, especially when microorganism growth is supplemented by oxygen and fertilizers.
The biological activity of bicyclic beta-lactam antibiotics depends strongly on the absolute configuration of the bridgehead carbon atom. Frelek and co-workers proposed an empirical helicity rule relating the configuration of the bridgehead carbon atom to the sign of the 220 nm band in the electronic circular dichroism (CD) spectrum of beta-lactams. Here we use synthetic organic chemistry, CD spectroscopy, and time-dependent density functional theory (TDDFT) to investigate the validity of this structure-property relationship for eight model compounds. For conformationally flexible beta-lactams, substantial thermal effects are found which must be included in calculations. To this end, we combine TDDFT calculations of CD with full quantum-mechanical Born-Oppenheimer molecular dynamics (MD) simulations for the first time. The CD spectra are sampled with ground-state density functional trajectories of up to 60 ps. The MD simulations show a surprisingly high sensitivity of the CD to the molecular conformation. On the other hand, the relation between CD and thermally averaged structural parameters is much less complex. While the helicity rule does not seem to hold for individual conformers, it is confirmed by the calculations for seven out of eight systems studied if thermally averaged CD spectra and structures are considered. Since thermal effects on CD can be larger than typical inherent inaccuracies of TDDFT, our results emphasize the need for a systematic treatment of conformational dynamics in CD calculations even for moderately flexible systems. Temperature-dependent CD measurements are very useful for this purpose. Our results also suggest that CD spectroscopy may be used as a sensitive probe of conformational dynamics if combined with electronic structure calculations.
A concise synthesis of 28a-homo-28a-thiolupane triterpenes and the corresponding saponins containing D-mannose, D-idose, L-arabinose and L-rhamnose moieties was elaborated. New triterpenes were obtained from readily available 3-O-allylbetulinal by elongation of the carbon chain by Wittig reaction, followed by hydrolysis of the enol ether, reduction of the elongated aldehyde and nucleophilic substitution of the corresponding mesylate with thiocyanate ion. Saponins were obtained by glycosylation of triterpenes with classical Schmidt
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.