Earthworms (Eisenia foetida) produce humic substances that can influence plant growth by mechanisms that are not yet clear. In this work, we investigated the effects of humic acids (HAs) isolated from cattle manure earthworm compost on the earliest stages of lateral root development and on the plasma membrane H ϩ -ATPase activity. These HAs enhance the root growth of maize (Zea mays) seedlings in conjunction with a marked proliferation of sites of lateral root emergence. They also stimulate the plasma membrane H ϩ -ATPase activity, apparently associated with an ability to promote expression of this enzyme. In addition, structural analysis reveals the presence of exchangeable auxin groups in the macrostructure of the earthworm compost HA. These results may shed light on the hormonal activity that has been postulated for these humic substances.
It is widely reported that some humic substances behave as exogenous auxins influencing root growth by mechanisms that are not yet completely understood. This study explores the hypothesis that the humic acids' effects on root development involve a nitric oxide signaling. Maize seedlings were treated with HA 20 mg C L(-1), IAA 0.1 nM, and NO donors (SNP or GSNO), in combination with either the auxin-signaling inhibitor PCIB, the auxin efflux inhibitor TIBA, or the NO scavenger PTIO. H(+)-transport-competent plasma membrane vesicles were isolated from roots to investigate a possible link between NO-induced H(+)-pump and HA bioactivity. Plants treated with either HA or SNP stimulated similarly the lateral roots emergence even in the presence of the auxin inhibitors, whereas NO scavenger diminished this effect. These treatments induced H(+)-ATPase stimulation by threefold, which was abolished by PTIO and decreased by auxin inhibitors. HA-induced NO synthesis was also detected in the sites of lateral roots emergence. These data depict a new scenario where the root development stimulation and the H(+)-ATPase activation elicited by either HA or exogenous IAA depend essentially on mechanisms that use NO as a messenger induced site-specifically in the early stages of lateral root development.
Resumo -A bioatividade de ácidos húmicos (AH) isolados de lodo da estação de tratamento de esgoto (AHL) e de vermicomposto (AHV) foi avaliada pela ação dessas substâncias sobre o transporte de prótons através da membrana plasmática de células de raízes de café e milho e sua relação com o desenvolvimento dessas espécies. Houve estímulo da área superficial radicular em ambas as espécies cultivadas com ambos AH, mostrando uma concentração ótima em torno de 40 mg L -1 . Nessa condição, os tratamentos com AHL e AHV estimularam a H + -ATPase de membrana plasmática em plântulas de café e milho. Os AHL foram mais efetivos na promoção desses efeitos do que os AHV. A modificação do perfil cromatográfico dos AH em solução antes e após o cultivo das plântulas revelou que a interação planta-AH promoveu uma redistribuição das massas moleculares dessas substâncias, sugerindo uma dinâmica de mobilização de subunidades funcionais dos AH por exsudatos das raízes. A análise estrutural dos AH detectou a presença de grupamentos de auxina. A análise comparativa da ação desses dois AH sobre as espécies representantes de plantas monocotiledôneas (milho) e dicotiledôneas (café) apontam para a ativação da H + -ATPase de plasmalema como possível marcador metabólico de bioatividade dos ácidos húmicos.Termos para indexação: Zea mays, Coffea arabica, lodo residual, ácidos orgânicos, vermicomposto.
Humic acids bioactivity: effects on root development and on the plasma membrane proton pumpAbstract -The bioactivity of humic acids (HA) isolated from sludge of the station of sewer treatment (HAL) and from vermicompost (HAV) was evaluated through the action of those substances on primary transport of protons of the plasma membrane of coffee and corn root cells and its relationship with the development of those species. A stimulation in the superficial area of roots was observed for both species cultivated with both humic acids, exhibiting an optimum concentration, about 40 mg L -1 of HA. In this condition the treatment with HAL and HAV stimulated the plasma membrane H + -ATPase of corn and coffee roots. HAL were more effective to promote those effects than HAV. The modification of the chromatographic profile of the HA in solution before and after the cultivation of the seedlings revealed that the interaction plant-HA promoted a rearrangement of the average molecular weight of those substances suggesting a dynamic mobilization of bioactive subunits of the HA by plant exudates. The structural analysis of the HA has detected the presence of auxin groups. A comparative analysis of the action of those HA on the monocotyledonous (corn) and dicotyledonous (coffee) plants indicates to the activation of plasmallema H + -ATPase as a possible metabolic marker for bioactivity of humic acids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.