A user-friendly website for the analysis of protein secondary structures from Circular Dichroism (CD) and Synchrotron Radiation Circular Dichroism (SRCD) spectra has been created.
We have merged four different views of the human plasma proteome, based on different methodologies, into a single nonredundant list of 1175 distinct gene products. The methodologies used were 1) literature search for proteins reported to occur in plasma or serum; 2) multidimensional chromatography of proteins followed by two-dimensional electrophoresis and mass spectroscopy (MS) identification of resolved proteins; 3) tryptic digestion and multidimensional chromatography of peptides followed by MS identification; and 4) tryptic digestion and multidimensional chromatography of peptides from low-molecularmass plasma components followed by MS identification. Of 1,175 nonredundant gene products, 195 were included in more than one of the four input datasets. Only 46 appeared in all four. Predictions of signal sequence and transmembrane domain occurrence, as well as Genome Ontology annotation assignments, allowed characterization of the nonredundant list and comparison of the data sources. The "nonproteomic" literature (468 input proteins) is strongly biased toward signal sequence-containing extracellular proteins, while the three proteomics methods showed a much higher representation of cellular proteins, including nuclear, cytoplasmic, and kinesin complex proteins. Cytokines and protein hormones were almost completely absent from the proteomics data (presumably due to low abundance), while categories like DNA-binding proteins were almost entirely absent from the literature data (perhaps unexpected and therefore not sought). Most major categories of proteins in the human proteome are represented in plasma, with the distribution at successively deeper layers shifting from mostly extracellular to a distribution more like the whole (primarily cellular) proteome. The resulting nonredundant list confirms the presence of a number of interesting candidate marker proteins in plasma and serum.
The UCL Bioinformatics Group web portal offers several high quality protein structure prediction and function annotation algorithms including PSIPRED, pGenTHREADER, pDomTHREADER, MEMSAT, MetSite, DISOPRED2, DomPred and FFPred for the prediction of secondary structure, protein fold, protein structural domain, transmembrane helix topology, metal binding sites, regions of protein disorder, protein domain boundaries and protein function, respectively. We also now offer a fully automated 3D modelling pipeline: BioSerf, which performed well in CASP8 and uses a fragment-assembly approach which placed it in the top five servers in the de novo modelling category. The servers are available via the group web site at http://bioinf.cs.ucl.ac.uk/.
SummaryThe transcription-related DNA damage response was analyzed on a genome-wide scale with great spatial and temporal resolution. Upon UV irradiation, a slowdown of transcript elongation and restriction of gene activity to the promoter-proximal ∼25 kb is observed. This is associated with a shift from expression of long mRNAs to shorter isoforms, incorporating alternative last exons (ALEs) that are more proximal to the transcription start site. Notably, this includes a shift from a protein-coding ASCC3 mRNA to a shorter ALE isoform of which the RNA, rather than an encoded protein, is critical for the eventual recovery of transcription. The non-coding ASCC3 isoform counteracts the function of the protein-coding isoform, indicating crosstalk between them. Thus, the ASCC3 gene expresses both coding and non-coding transcript isoforms with opposite effects on transcription recovery after UV-induced DNA damage.
We describe the latest implementation of the GenTHREADER method for structure prediction on a genomic scale. The method combines profile-profile alignments with secondary-structure specific gap-penalties, classic pair- and solvation potentials using a linear combination optimized with a regression SVM model. We find this combination significantly improves both detection of useful templates and accuracy of sequence-structure alignments relative to other competitive approaches. We further present a second implementation of the protocol designed for the task of discriminating superfamilies from one another. This method, pDomTHREADER, is the first to incorporate both sequence and structural data directly in this task and improves sensitivity and selectivity over the standard version of pGenTHREADER and three other standard methods for remote homology detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.