Abstract. MR-only radiotherapy treatment planning requires accurate MR-to-CT synthesis. Current deep learning methods for MR-to-CT synthesis depend on pairwise aligned MR and CT training images of the same patient. However, misalignment between paired images could lead to errors in synthesized CT images. To overcome this, we propose to train a generative adversarial network (GAN) with unpaired MR and CT images. A GAN consisting of two synthesis convolutional neural networks (CNNs) and two discriminator CNNs was trained with cycle consistency to transform 2D brain MR image slices into 2D brain CT image slices and vice versa. Brain MR and CT images of 24 patients were analyzed. A quantitative evaluation showed that the model was able to synthesize CT images that closely approximate reference CT images, and was able to outperform a GAN model trained with paired MR and CT images.
To enable magnetic resonance (MR)-only radiotherapy and facilitate modelling of radiation attenuation in humans, synthetic CT (sCT) images need to be generated. Considering the application of MR-guided radiotherapy and online adaptive replanning, sCT generation should occur within minutes. This work aims at assessing whether an existing deep learning network can rapidly generate sCT images for accurate MR-based dose calculations in the entire pelvis. A study was conducted on data of 91 patients with prostate (59), rectal (18) and cervical (14) cancer who underwent external beam radiotherapy acquiring both CT and MRI for patients' simulation. Dixon reconstructed water, fat and in-phase images obtained from a conventional dual gradient-recalled echo sequence were used to generate sCT images. A conditional generative adversarial network (cGAN) was trained in a paired fashion on 2D transverse slices of 32 prostate cancer patients. The trained network was tested on the remaining patients to generate sCT images. For 30 patients in the test set, dose recalculations of the clinical plan were performed on sCT images. Dose distributions were evaluated comparing voxel-based dose differences, gamma and dose-volume histogram (DVH) analysis. The sCT generation required 5.6 s and 21 s for a single patient volume on a GPU and CPU, respectively. On average, sCT images resulted in a higher dose to the target of maximum 0.3%. The average gamma pass rates using the 3%, 3 mm and 2%, 2 mm criteria were above 97 and 91%, respectively, for all volumes of interests considered. All DVH points calculated on sCT differed less than ±2.5% from the corresponding points on CT. Results suggest that accurate MR-based dose calculation using sCT images generated with a cGAN trained on prostate cancer patients is feasible for the entire pelvis. The sCT generation was sufficiently fast for integration in an MR-guided radiotherapy workflow.
This work commenced during the 3rd European Society for Therapeutic Radiology and Oncology (ESTRO) physics workshop on 'Implementation/commissioning/QA of artificial intelligence techniques' in Budapest (2019) Radiotherapy and Oncology xxx (xxxx) xxx Contents lists available at ScienceDirect Radiotherapy and Oncology j o u r n a l h o m e p a g e : w w w. t h e g r e e n j o u r n a l. c o m Please cite this article as: L. Vandewinckele, M. Claessens, A. Dinkla et al., Overview of artificial intelligence-based applications in radiotherapy: Recommendations for implementation and quality assurance, Radiotherapy and Oncology,
Purpose To develop and evaluate a patch‐based convolutional neural network (CNN) to generate synthetic computed tomography (sCT) images for magnetic resonance (MR)‐only workflow for radiotherapy of head and neck tumors. A patch‐based deep learning method was chosen to improve robustness to abnormal anatomies caused by large tumors, surgical excisions, or dental artifacts. In this study, we evaluate whether the generated sCT images enable accurate MR‐based dose calculations in the head and neck region. Methods We conducted a retrospective study on 34 patients with head and neck cancer who underwent both CT and MR imaging for radiotherapy treatment planning. To generate the sCTs, a large field‐of‐view T2‐weighted Turbo Spin Echo MR sequence was used from the clinical protocol for multiple types of head and neck tumors. To align images as well as possible on a voxel‐wise level, CT scans were nonrigidly registered to the MR (CTreg). The CNN was based on a U‐net architecture and consisted of 14 layers with 3 × 3 × 3 filters. Patches of 48 × 48 × 48 were randomly extracted and fed into the training. sCTs were created for all patients using threefold cross validation. For each patient, the clinical CT‐based treatment plan was recalculated on sCT using Monaco TPS (Elekta). We evaluated mean absolute error (MAE) and mean error (ME) within the body contours and dice scores in air and bone mask. Also, dose differences and gamma pass rates between CT‐ and sCT‐based plans inside the body contours were calculated. Results sCT generation took 4 min per patient. The MAE over the patient population of the sCT within the intersection of body contours was 75 ± 9 Hounsfield Units (HU) (±1 SD), and the ME was 9 ± 11 HU. Dice scores of the air and bone masks (CTreg vs sCT) were 0.79 ± 0.08 and 0.70 ± 0.07, respectively. Dosimetric analysis showed mean deviations of −0.03% ± 0.05% for dose within the body contours and −0.07% ± 0.22% inside the >90% dose volume. Dental artifacts obscuring the CT could be circumvented in the sCT by the CNN‐based approach in combination with Turbo Spin Echo (TSE) magnetic resonance imaging (MRI) sequence that typically is less prone to susceptibility artifacts. Conclusions The presented CNN generated sCTs from conventional MR images without adding scan time to the acquisition. Dosimetric evaluation suggests that dose calculations performed on the sCTs are accurate, and can therefore be used for MR‐only radiotherapy treatment planning of the head and neck.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.