This work commenced during the 3rd European Society for Therapeutic Radiology and Oncology (ESTRO) physics workshop on 'Implementation/commissioning/QA of artificial intelligence techniques' in Budapest (2019) Radiotherapy and Oncology xxx (xxxx) xxx Contents lists available at ScienceDirect Radiotherapy and Oncology j o u r n a l h o m e p a g e : w w w. t h e g r e e n j o u r n a l. c o m Please cite this article as: L. Vandewinckele, M. Claessens, A. Dinkla et al., Overview of artificial intelligence-based applications in radiotherapy: Recommendations for implementation and quality assurance, Radiotherapy and Oncology,
Artificial intelligence (AI) has recently become a very popular buzzword, as a consequence of disruptive technical advances and impressive experimental results, notably in the field of image analysis and processing. In medicine, specialties where images are central, like radiology, pathology or oncology, have seized the opportunity and considerable efforts in research and development have been deployed to transfer the potential of AI to clinical applications. With AI becoming a more mainstream tool for typical medical imaging analysis tasks, such as diagnosis, segmentation, or classification, the key for a safe and efficient use of clinical AI applications relies, in part, on informed practitioners. The aim of this review is to present the basic technological pillars of AI, together with the state-of-the-art machine learning methods and their application to medical imaging. In addition, we discuss the new trends and future research directions. This will help the reader to understand how AI methods are now becoming an ubiquitous tool in any medical image analysis workflow and pave the way for the clinical implementation of AI-based solutions.
Background and purpose: The use of artificial intelligence (AI)/ machine learning (ML) applications in radiation oncology is emerging, however no clear guidelines on commissioning of ML-based applications exist. The purpose of this study was therefore to investigate the current use and needs to support implementation of ML-based applications in routine clinical practice. Materials and methods: A survey was conducted among medical physicists in radiation oncology, consisting of four parts: clinical applications (1), model training, acceptance and commissioning (2), quality assurance (QA) in clinical practice and General Data Protection Regulation (GDPR) (3), and need for education and guidelines (4). Survey answers of medical physicists of the same radiation oncology centre were treated as a separate unique responder in case reporting on different AI applications. Results: In total, 213 medical physicists from 202 radiation oncology centres were included in the analysis. Sixtynine percent (1 4 7) was using (37%) or preparing (32%) to use ML in clinic, mostly for contouring and treatment planning. In 86%, human observers were still involved in daily clinical use for quality check of the output of the ML algorithm. Knowledge on ethics, legislation and data sharing was limited and scattered among responders. Besides the need for (implementation) guidelines, training of medical physicists and larger databases containing multicentre data was found to be the top priority to accommodate the further introduction of ML in clinical practice. Conclusion: The results of this survey indicated the need for education and guidelines on the implementation and quality assurance of ML-based applications to benefit clinical introduction.
The interest for machine learning (ML) has grown tremendously in recent years, partly due to the performance leap that occurred with new techniques of deep learning, convolutional neural networks for images, increased computational power, and wider availability of large data sets. Most fields of medicine follow that popular trend and, notably, radiation oncology is one of those that are at the forefront, with already a long tradition in using digital images and fully computerized workflows. ML models are driven by data, and in contrast with many statistical or physical models, they can be very large and complex, with countless generic parameters. This inevitably raises two questions, namely, the tight dependence between the models and the data sets that feed them, and the interpretability of the models, which scales with its complexity. Any problems in the data used to train the model will be later reflected in their performance. This, together with the low interpretability of ML models, makes their implementation into the clinical workflow particularly difficult. Building tools for risk assessment and quality assurance of ML models must involve then two main points: interpretability and data-model dependency. After a joint introduction of both radiation oncology and ML, this paper reviews the main risks and current solutions when applying the latter to workflows in the former. Risks associated with data and models, as well as their interaction, are detailed. Next, the core concepts of interpretability, explainability, and data-model dependency are formally defined and illustrated with examples. Afterwards, a broad discussion goes through key applications of ML in workflows of radiation oncology as well as vendors’ perspectives for the clinical implementation of ML.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.