Intestinal ischemia-reperfusion (IR) injury is associated with high mortality rates, which have not improved in the past decades despite advanced insight in its pathophysiology using in vivo animal and human models. The inability to translate previous findings to effective therapies emphasizes the need for a physiologically relevant in vitro model to thoroughly investigate mechanisms of IR-induced epithelial injury and test potential therapies. In this study, we demonstrate the use of human small intestinal organoids to model IR injury by exposing organoids to hypoxia and reoxygenation (HR). A mass-spectrometry-based proteomics approach was applied to characterize organoid differentiation and decipher protein dynamics and molecular mechanisms of IR injury in crypt-like and villus-like human intestinal organoids. We showed successful separation of organoids exhibiting a crypt-like proliferative phenotype, and organoids exhibiting a villus-like phenotype, enriched for enterocytes and goblet cells. Functional enrichment analysis of significantly changing proteins during HR revealed that processes related to mitochondrial metabolism and organization, other metabolic processes, and the immune response were altered in both organoid phenotypes. Changes in protein metabolism, as well as mitophagy pathway and protection against oxidative stress were more pronounced in crypt-like organoids, whereas cellular stress and cell death associated protein changes were more pronounced in villus-like organoids. Profile analysis highlighted several interesting proteins showing a consistent temporal profile during HR in organoids from different origin, such as NDRG1, SDF4 or DMBT1. This study demonstrates that the HR response in human intestinal organoids recapitulates properties of the in vivo IR response. Our findings provide a framework for further investigations to elucidate underlying mechanisms of IR injury in crypt and/or villus separately, and a model to test therapeutics to prevent IR injury.
Intestinal ischemia–reperfusion
(IR) injury is a severe
clinical condition, and unraveling its pathophysiology is crucial
to improve therapeutic strategies and reduce the high morbidity and
mortality rates. Here, we studied the dynamic proteome and phosphoproteome
in the human intestine during ischemia and reperfusion, using liquid
chromatography-tandem mass spectrometry (LC-MS/MS) analysis to gain
quantitative information of thousands of proteins and phosphorylation
sites, as well as mass spectrometry imaging (MSI) to obtain spatial
information. We identified a significant decrease in abundance of
proteins related to intestinal absorption, microvillus, and cell junction,
whereas proteins involved in innate immunity, in particular the complement
cascade, and extracellular matrix organization increased in abundance
after IR. Differentially phosphorylated proteins were involved in
RNA splicing events and cytoskeletal and cell junction organization.
In addition, our analysis points to mitogen-activated protein kinase
(MAPK) and cyclin-dependent kinase (CDK) families to be active kinases
during IR. Finally, matrix-assisted laser desorption ionization time-of-flight
(MALDI-TOF) MSI presented peptide alterations in abundance and distribution,
which resulted, in combination with Fourier-transform ion cyclotron
resonance (FTICR) MSI and LC-MS/MS, in the annotation of proteins
related to RNA splicing, the complement cascade, and extracellular
matrix organization. This study expanded our understanding of the
molecular changes that occur during IR in the human intestine and
highlights the value of the complementary use of different MS-based
methodologies.
Thyroid is a glandular tissue in the human body in which the function can be severely affected by endocrine disrupting chemicals (EDCs). Current in vitro assays to test endocrine disruption by chemical compounds are largely based on 2D thyroid cell cultures, which often fail to precisely evaluate the safety of these compounds. New and more advanced 3D cell culture systems are urgently needed to better recapitulate the thyroid follicular architecture and functions and help to improve the predictive power of such assays. Herein, the development of a thyroid organoid‐on‐a‐chip (OoC) device using polymeric membranous carriers is described. Mouse embryonic stem cell derived thyroid follicles are incorporated in a microfluidic chip for a 4 day experiment at a flow rate of 12 µL min−1. A reversible seal provides a leak‐tight sealing while enabling quick and easy loading/unloading of thyroid follicles. The OoC model shows a high degree of functionality, where organoids retain expression of key thyroid genes and a typical follicular structure. Finally, transcriptional changes following benzo[k]fluoranthene exposure in the OoC device demonstrate activation of the xenobiotic aryl hydrocarbon receptor pathway. Altogether, this OoC system is a physiologically relevant thyroid model, which will represent a valuable tool to test potential EDCs.
Ischemia-reperfusion of the human small intestine massively changed its transcriptional landscape. Functional analysis showed predominant regulation of the unfolded protein response. Pharmacologic inhibition of the unfolded protein response strongly reduced its pro-apoptotic signaling during hypoxia-reoxygenation in human small intestinal organoids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.