The electrodeposition of FeNi alloy films was performed galvanostatically in the sulfate solution (Fe 2+ / Ni 2+ mass ratio 1:2) in order investigate their co-deposition mechanism. The FeNi layers were deposited at variable substrates (copper, brass, silver) under the same chemical (electrolyte composition) and electric plating (current density value) conditions. After applying various time, substrates and external magnetic field orientation, the quality of the obtained film was examined. The surface morphology and crystallographic texture variation were investigated by the Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscopy (EDX), Wavelength Dispersive X-ray Fluorescence (WDXRF) and Laser Confocal Scanning Microscope (LCSM). The anomalous co-deposition of iron group metals is evidently dependent on the substrate.
Alloy electrodeposition with superimposed uniform magnetic field leads to Lorentz force generation. The Lorentz force is a factor which is able to modify the deposit structure, its texture, morphology and magnetic properties. The objective of the presented research was to show the composition, morphology and the surface roughness development of Fe-Ni binary alloys electrodeposited under the influence of the uniform magnetic field. The applied magnetic field caused increase of the paramagnetic element content in the alloys. The surface roughness decrease with an external magnetic field application was observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.