The use of phase-sensitive Alternating Current Polarography (ACP) is investigated for the minimization of adsorption effects in metal-ligand systems with induced metal adsorption onto the electrode. When ACP is applied to obtain information on metal complexation in bulk, some problems arise from the faradaic contribution of adsorbed species. This effect can be corrected by using the capacitive current measured in the potential region of the faradaic peak. Using this correction, ACP produces similar results to those from Reverse Pulse Polarography (RPP), a technique that minimizes electrode adsorption effects on the measured currents. The method proposed is applied to the study of the Cd -humic acid system that has been investigated by ACP, RPP and Differential Pulse Polarography (DPP).
A method based on the combined use of multivariate curve resolution by alternating least squares (MCR-ALS) with phase sensitive alternating current polarography (ACP) is proposed to evaluate the phase angle where capacitive current is minimized in a much more accurate way than the visual inspection of ACP signals. The method allows, through the analysis of series of AC polarograms measured at different phase angles out the potential, to distinguish between faradaic and capacitive contributions. Then the angle at which the capacitive current is negligible can be shown and, in some cases, the influence of adsorption on measured currents minimized.
A comparison of a differential pulse polarographic with a phase sensitive alternating current polarographic study of the Cd-Cys-Gly and Cd-PC(2) systems [PC(2) being a phytochelatin of general structure (gamma-Glu-Cys)(n)-Gly, with n = 2] has been performed. The chemometric multivariate curve resolution method with alternating least squares was applied in the experimental data analysis. The results obtained by both polarographic techniques have made it possible to find out the formation sequences of the complexes and their final stoichiometries. The alternating current polarograms compared with the differential pulse ones show some differences (a new signal and an important shift of peak potentials), which anyway are consistent with some of the conclusions obtained by differential pulse polarography. This fact implies that although the alternating current polarography results need some corrections before data treatment, they provide extra information that complements the conclusions achieved by differential pulse polarography.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.