Polymorphonuclear neutrophils (PMNs) are rapidly recruited to tissues upon injury or infection. There, they can encounter local and/or recruited immature dendritic cells (iDCs), a colocalization that could promote at least transient interactions and mutually influence the two leukocyte populations. Using human live blood PMNs and monocytederived iDCs, we examined if these leukocytes actually interacted and whether this influenced DC function. Indeed, coculture with live but not apoptotic PMNs led to up-regulation of membrane CD40, CD86, and human leukocyte antigen (HLA)-DR on DCs. Whereas CD40 up-regulation was dependent on soluble factors released by PMNs, as determined in cultures conducted in different chambers, cell contact was necessary for CD86 and HLA-DR up-regulation, a process that was inhibited by anti-CD18 antibodies, indicating that CD18 ligation was required. We also found that via a cell contact-dependent mechanism, DCs acquired Candida albicansderived antigens from live as well as from apoptotic PMNs and could thus elicit antigen-specific T lymphocyte responses. Altogether, our data demonstrate the occurrence of cross-talk between human PMNs and DCs and provide new insights into the immune processes occurring upstream of the interactions between DCs and T lymphocytes. J. Leukoc. Biol. 79: 977-988; 2006.
Expression of HLA and CD1b molecules was investigated in the THP-1 macrophage cell line within 2 weeks following phagocytosis of mycobacteria or Escherichia coli. During the first 2-3 days, cell surface expression of HLA class II and CD1b was drastically down-modulated, whereas HLA class I expression was up-modulated. In the following days both HLA class II and CD1b expression first returned to normal, then increased and finally returned to normal with kinetics similar to that observed for the steadily increased HLA class I. The initial down-modulation of HLA class II and CD1b cell surface antigens was absolutely dependent on phagocytosis of bacteria. Further studies indicated that initial HLA class II cell surface down-modulation (1) was not due to reduced transcription or biosynthesis of mature HLA class II heterodimers, (2) was only partially, if at all, rescued by treatment with IFN-gamma, although both mRNA and corresponding intracellular proteins increased up to sixfold with respect to untreated cells, and (3) resulted in failure of THP-1 cells to process and present mycobacterial antigens to HLA-DR-restricted antigen-specific T cell lines. The existence of a transient block of transport of mature HLA class II heterodimers to the cell surface in the first days after phagocytosis of bacteria may have negative and positive consequences: it decreases APC function early but it may increase it later by favoring optimal loading of bacterial antigens in cellular compartments at high concentration of antigen-presenting molecules.
The fine specificity of the cellular immune response to Candida albicans (i.e., recognition of different antigenic components) between normal controls and human immunodeficiency virus-infected patients in various stages of disease was compared. C. albicans-specific T cells, enriched by antigen stimulation and interleukin-2 expansion, were challenged with antigenic fractions of different molecular weight obtained by SDS-gel fractionation of C. albicans extracts in the presence of autologous mononuclear cells as antigen-presenting cells. Proliferative responses showed similar patterns of reactivity between controls and category A and B seropositive subjects. Category C patients with concurrent C. albicans infections did not give rise to C. albicans-specific T cell lines, confirming the T cell defect. Patients without clinically evident C. albicans infection had a low but broad reactivity pattern of C. albicans-specific T cells. These results suggest that depletion of C. albicans-specific T cells, independent of their fine specificity, occurs along with disease progression.
Human macrophage and T cell lines were stably transfected with HIV-1 wild-type Tat or Tat mutants in the cysteine-rich region displaying trans-dominant negative effects on HIV-1 life cycle. The expression of HLA class I and class II molecules was not affected by wild-type Tat. Tat mutants, instead, profoundly down-regulated in a dose-dependent fashion the expression of class II, but not of class I, in both cell types by acting at the transcriptional level. Down-regulation was manifested on constitutive and IFN-gamma-induced class II gene expression and did not correlate with reduced transcription of the AIR-1 gene product CIITA, the major transcriptional activator of class II genes, indicating that Tat mutants did not act by inhibiting AIR-1 gene expression. Class II down-modulation had important functional implications in macrophages, as both antigen processing and presenting capacity were inhibited. These results represent the first evidence that a modified HIV-1 Tat product can act as a potent immunosuppressor by inhibiting the HLA class II expression necessary for triggering both cellular and humoral responses against pathogens. The use of these HIV-1 Tat mutants also discloses new opportunities to investigate the molecular mechanisms underlying the coordinate HLA class II gene transcription.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.