The use of tetrahydrofuran/decanol as porogens for the fabrication of micropellicular poly(styrene/divinylbenzene) monoliths enabled the rapid and highly efficient separation of peptides and proteins by reversed-phase high-performance liquid chromatography (RP-HPLC). In contrast to conventional, granular, porous stationary phases, in which the loading capacity is a function of molecular mass, the loadability of the monoliths both for small peptides and large proteins was within the 0.40.9-pmol range for a 60- x 0.2-mm capillary column. Lower limits of detection obtained by measuring UV-absorbance at 214 nm with a 3-nl capillary detection cell were 500 amol for an octapeptide and 200 amol for ribonuclease A. Upon reduction of the concentration of trifluoroacetic acid in the eluent from the commonly used 0.1-0.2 to 0.05%, the separation system was successfully coupled to electrospray ionization mass spectrometry (ESI-MS) at the cost of only a small decrease in separation efficiency. Detection limits for proteins with ESI-MS were in the lower femtomole range. High-quality mass spectra were extracted from the reconstructed ion chromatograms, from which the masses of both peptides and proteins were deduced at a mass accuracy of 50-150 ppm. The applicability of monolithic column technology in proteomics was demonstrated by the mass fingerprinting of tryptic peptides of bovine catalase and human transferrin and by the analysis of membrane proteins related to the photosystem II antenna complex of higher plants.
The changes induced in the photosynthetic apparatus of spinach (Spinacia oleracea L.) seedlings exposed to iron deficiency shortly after germination were characterized with two proteomic approaches coupled with chlorophyll and xanthophyll analysis and in vivo measurements of photosynthesis. During the first 10 d of iron deficiency the concentrations of chlorophyll b and violaxanthin were greatly reduced, but all xanthophylls recovered after 13-17 d of iron deficiency, when both chlorophylls were negatively affected. No new protein was formed in iron-deficient leaves, and no protein disappeared altogether. Photosystem I (PSI) proteins were largely reduced, but the stoichiometry of the antenna composition of PSI was not compromised. On the contrary, PSII proteins were less affected by the stress, but the specific antennae Lhcb4 and Lhcb6, Lhcb2 and its isoform Lhcb1.1 were all reduced, while the concentration of Lhcb3 increased. A strong reduction in thylakoid bending and an altered distribution pattern for the reduced PSI and PSII complexes were observed microscopically in iron-deficient leaves. Supercomplex organization was also affected by the stress. The trimeric organization of Lhcb and the dimerization of Lhca were reduced, while monomerization of Lhcb increased. However, the trimerization of Lhcb was partially recovered after 13-17 d of iron deficiency. In iron-deficient leaves, photosynthesis was strongly inhibited at different light intensities, and a high de-epoxidation status of the xanthophylls was observed, in association with a strong impairment of photochemical efficiency and an increase of heat dissipation as monitored by the non-photochemical quenching of fluorescence. All these negative effects of iron deficiency were attenuated but not fully reversed after again supplying iron to iron-deficient leaves for 7-13 d. These results indicate that iron deficiency has a strong impact on the proteomic structure of spinach photosystems and suggest that, in higher plants, adaptive mechanisms common in lower organisms, which allow rapid changes of the photosystem structure to cope with iron stress, are absent. It is speculated that the observed changes in the monomer-trimer equilibrium of major PSII antennae, which is possibly the result of xanthophyll fluctuations, is a first adaptative adjustment to iron deficiency, and may eventually play a role in light dissipation mechanisms.
Ischemia is a primary cause of neuronal death in retinal diseases. The repertoire of expressed transmitter receptors would determine the neurons' responses to ischemic damage, and peptidergic receptors may be involved. With a new in vitro model of the ischemic mouse retina, we investigated whether an altered expression of somatostatin receptors could modulate retinal responses to ischemia. We used retinas of somatostatin receptor 1 (sst(1)) knock out (KO) mice, where sst(2) are over-expressed and over-functional, and of sst(2) KO mice. TUNEL analysis of ischemic retinas showed a marked reduction of cell death in sst(1) KO retinas, while there were no differences between wild-type (WT) and sst(2) KO retinas. In addition, caspase-3 mRNA expression was also reduced in sst(1) KO as compared to WT retinas. An immunohistochemical analysis demonstrated that different cell populations responded differently to the ischemic insult, and that the persistence of some immunohistochemical markers was greater in sst(1) KO than in WT or in sst(2) KO retinas. In particular, rod bipolar cell survival was markedly improved in sst(1) KO retinas, while it was dramatically decreased in sst(2) KO retinas. Furthermore, consistent with a role of glutamate excitotoxicity in ischemia-induced neuronal death, retinal glutamate release was observed to increase under ischemic conditions, but this increase was significantly reduced in sst(1) KO retinas. These observations demonstrate that an increased presence of functional sst(2) protects against retinal ischemia, thus implementing the background for the use of sst(2) analogs in therapies of retinal diseases such as glaucoma or diabetic retinopathy.
The time course of the thylakoid membranes proteomic profile changes upon cadmium (Cd) addition to hydroponic Spinacia oleracea L. plants has been investigated. Two different proteomic approaches have been used: blue native gel electrophoresis followed by SDS-PAGE (2D BN-SDS-PAGE) and sucrose density gradient ultracentrifugation followed by RP-HPLC. Chlorophyll (Chl) and xanthophylls concentrations, together with ESR and real time PCR measurements, were also performed to get a complete overview of all photosystem changes. Cd only accumulated in basal leaves, that therefore were prevalently investigated for assessment of Cd induced changes. Here, Cd strongly reduced Chl concentration, especially Chl a. During the first 15 days of treatment, native electrophoresis system revealed high sensitivity of PSI to Cd, while minor effects on PSII were observed. Cytochrome b(6)/f and the ATP-synthase complex did not change following the Cd treatment. A significant reduction of antenna proteins of PSI was observed, while PSII antennae were affected to a minor extent, with exception of the isomeric Lhcb1.1 which decreased significantly already at the onset of the treatment. Some PSII core proteins were overexpressed, but showed reduced activity. No new protein was formed and no specific protein disappeared in the photosynthetic apparatus of Cd-treated leaves. Upon removal of Cd, a rapid resynthesis of total Chl and a significant resynthesis of Lhcb1.1 antenna were observed, suggesting that Cd affects specifically the photosynthetic apparatus of spinach basal leaves, replacing other metal ions inside proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.