The phytoplasma bacterial plant parasite depends on leafhopper insects to spread and propagate itself. This study reveals how phytoplasma subverts plant development to turn flowers into leaves and thus make its host more attractive to leafhoppers.
The kinetochore provides a physical connection between microtubules and the centromeric regions of chromosomes that is critical for their equitable segregation. The trimeric Mis12 sub-complex of the
Drosophila
kinetochore binds to the mitotic centromere using CENP-C as a platform. However, knowledge of the precise connections between Mis12 complex components and CENP-C has remained elusive despite the fundamental importance of this part of the cell division machinery. Here, we employ hydrogen–deuterium exchange coupled with mass spectrometry to reveal that Mis12 and Nnf1 form a dimer maintained by interacting coiled-coil (CC) domains within the carboxy-terminal parts of both proteins. Adjacent to these interacting CCs is a carboxy-terminal domain that also interacts with Nsl1. The amino-terminal parts of Mis12 and Nnf1 form a CENP-C-binding surface, which docks the complex and thus the entire kinetochore to mitotic centromeres. Mutational analysis confirms these precise interactions are critical for both structure and function of the complex. Thus, we conclude the organization of the Mis12–Nnf1 dimer confers upon the Mis12 complex a bipolar, elongated structure that is critical for kinetochore function.
Fasciola hepatica is a liver fluke that infects 2.4 million of people and causes great economical loss in animal production. To date a 100% effective vaccine has not been developed and the disease is controlled by drug therapy. Great efforts are put into development of effective vaccine against parasite what is difficult since Fasciola spp. (like other helmints) during evolutionary process has developed sophisticated and efficient methods to evade immune response. During preliminary experiments it is convenient to use cell lines which are relatively cheap and allow for reproducible comparison of results between laboratories. We stimulated BOMA (bovine monocyte/macrophage cell line) and BOMAC (bovine macrophage cell line) with native or recombinant antigens of Fasciola hepatica and assessed IFN-γ, IL-4 and TNF-α level upon stimulation. We observed diminished secretion of proinflammatory TNF-α in LPS activated BOMA cells stimulated with Excretory/Secretory products of adult fluke (Fh-ES). We also observed greater changes in gene expression in LPS activated BOMA cells than in non activated BOMA cells upon stimulation using Fh-ES. The results show possibility of using cell lines for in vitro research of bovine immune response against liver fluke, although this model still requires validation and further characterization.
Background: The immunotherapeutic approach, adoptive cell transfer (ACT) have in malignant melanoma studies showed clinical durable responses in more than 50% of patients. However, the expansion of tumor infiltrating lymphocytes (TILs) requires extensive ex vivo culturing often at the cost of T cell differentiation and functional capacity. Most current strategies involve non-specific expansion of bulk TILs, often providing growth preference to co-infiltrated virus specific T cells and driving an exhausted phenotype of the T cell product. Methods: It is aimed to develop a new technology to expand tumor reactive T cells, through use of Major histocompatibility complex (MHC)-loaded artificial antigenpresenting scaffolds (Ag-scaffold) to provide the T cells with specific functional stimulation to obtain phenotypic and functional properties to mediate tumor regression. These scaffolds will be build using a dextran-based polysaccharide backbone associated with streptavidin molecules where biotinylated peptide-MHC class I molecules are attached to govern the specific interaction with a specific T cell, and a combination of biotinylated cytokines and co-stimulatory molecules are co-attached to provide stimulation to the T cell to achieve increased functional properties. The Ag-scaffolds interacts specifically with T cells based on recognition of the peptide-MHC molecule and effectively expand and functionally stimulate specific T cells, while leaving all other T cell specificities untouched. Results: from in vitro experiments have showed that antigen specific CD8 T cells stimulated with these Ag-scaffolds has high CD28 expression and low PD-1 expression, associated with high proliferation potential and enhanced antitumor effect in vivo. Furthermore, this expansion strategy provides a high frequency of multifunctional antigen specific CD8 T cells expressing IFN-, TNF-a, and CD107a upon target recognition. Conclusions: This expansion technology could with great advantage be used in ACT, to increase the anti-tumor effect of the transferred T cell product, as all of the achieved T cell characteristics are of significant importance for in vivo tumor cell recognition following ACT of expanded T cell products.Legal entity responsible for the study: Sine Reker Hadrup Funding: Lundbeck foundation Disclosure: All authors have declared no conflicts of interest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.