Wearable electronics offer incredible benefits in mobile healthcare monitoring, sensing, portable energy harvesting and storage, human-machine interactions, etc., due to the evolution of rigid electronics structure to flexible and stretchable devices. Lately, transition metal carbides and nitrides (MXenes) are highly regarded as a group of thriving two-dimensional nanomaterials and extraordinary building blocks for emerging flexible electronics platforms because of their excellent electrical conductivity, enriched surface functionalities, and large surface area. This article reviews the most recent developments in MXene-enabled flexible electronics for wearable electronics. Several MXeneenabled electronic devices designed on a nanometric scale are highlighted by drawing attention to widely developed nonstructural attributes, including 3D configured devices, textile and planer substrates, bioinspired structures, and printed materials. Furthermore, the unique progress of these nanodevices is highlighted by representative applications in healthcare, energy, electromagnetic interference (EMI) shielding, and humanoid control of machines. The emerging prospects of MXene nanomaterials as a key frontier in nextgeneration wearable electronics are envisioned and the design challenges of these electronic systems are also discussed, followed by proposed solutions.
The organic insulator–metal interface is the most important junction in flexible electronics. The strong band offset of organic insulators over the Fermi level of electrodes should theoretically impart a sufficient impediment for charge injection known as the Schottky barrier. However, defect formation through Anderson localization due to topological disorder in polymers leads to reduced barriers and hence cumbersome devices. A facile nanocoating comprising hundreds of highly oriented organic/inorganic alternating nanolayers is self‐coassembled on the surface of polymer films to revive the Schottky barrier. Carrier injection over the enhanced barrier is further shunted by anisotropic 2D conduction. This new interface engineering strategy allows a significant elevation of the operating field for organic insulators by 45% and a 7× improvement in discharge efficiency for Kapton at 150 °C. This superior 2D nanocoating thus provides a defect‐tolerant approach for effective reviving of the Schottky barrier, one century after its discovery, broadly applicable for flexible electronics.
Nature not only carefully prepares ingenious raw materials but also continuously inspires and guides human beings to create a wide variety of intelligent materials. As the most abundant mineral resource on earth, clay minerals are no longer synonymous with ceramics and cements. Many natural clay minerals can be exfoliated into single-or few-layered nanosheets with exquisite physicochemical properties, which can be reassembled into functional membranes with a macroscopic controllable size and microscopic ordered structure. They are thus used in many fields including chemistry, biology, energy, and environmental science. Strategic design represents one of the key processes to enhance the value of clay minerals and broaden their applications. In this work, the three frequently used approaches of exfoliation are highlighted and the six routes of assembly including casting, dip-coating, spray coating, vacuum filtration, electrophoretic deposition, and 3D printing are compared. The corresponding principles and advantages are summarized. Representative applications of clay-based multifunctional membranes in protection, separation, responsiveness, flexible electronics, and energy conversion are presented. The challenges and future perspectives of the claybased multifunctional membranes are discussed.
In this study, a calcium–aluminum-layered double hydroxide (CaAl-LDH) thin film was grown on an AA6082 aluminum alloy, for the very first time, by using a facile in situ growth method in an effort to investigate the CaAl-LDH structural geometry and corresponding corrosion resistance properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.