Preterm delivery is both a traumatizing experience for the patient and a burden on the healthcare system. A condition distinguishable by its phenotype in prematurity is cervical insufficiency, where certain cases exhibit a strong genetic component. Despite genomic advancements, little is known about the genetics of human cervix remodeling during pregnancy. Using selected gene approaches, a few studies have demonstrated an association of common gene variants with cervical insufficiency. However, until now, no study has employed comprehensive methods to investigate this important subject matter. In this study, we asked: i) are there genes reliably linked to cervical insufficiency and, if so, what are their roles? and ii) what is the proportion of cases of non-syndromic cervical insufficiency attributable to these genetic variations? We performed next-generation sequencing on 21 patients with a clinical presentation of cervical insufficiency. To assist the sequencing data interpretation, we retrieved all known genes implicated in cervical functioning through a systematic literature analysis and additional gene searches. These genes were then classified according to their relation to the questions being posed by the study. Patients' sequence variants were filtered for pathogenicity and assigned a likelihood of being contributive to phenotype development. Gene extraction and analysis revealed 12 genes primarily linked to cervical insufficiency, the majority of which are known to cause collagenopathies. Ten patients carried disruptive variants potentially contributive to the development of non-syndromic cervical insufficiency. Pathway enrichment analysis of variant genes from our cohort revealed an increased variation burden in genes playing roles in tissue mechanical and biomechanical properties, i.e. collagen biosynthesis and cell-extracellular matrix communications. Consequently, the proposed idea of cervical insufficiency being a subtle form of collagenopathy, now strengthened by our genetic findings, might open up new opportunities for improved patient evaluation and management.
Genetic testing is becoming increasingly required at almost every stage of failed female reproduction/infertility. Nonetheless, clinical evidence for the majority of identified gene–disease relationships is ill-defined, thus leading to difficult gene variant interpretation and poor translation of existing knowledge into clinics. We aimed to identify the genes that have ever been implicated in monogenic female reproductive failure in humans and to classify the identified gene–disease relationship pairs using a standardized clinical validity assessment. A PubMed search following PRISMA guidelines was conducted on 20 September 2021 aiming to identify studies pertaining to genetic causes of phenotypes of female reproductive failure. The clinical validity of identified gene–disease pairs was assessed using standardized criteria, counting whether sufficient genetic and experimental evidence has been accumulated to consider a single gene ‘characterized’ for a single Mendelian disease. In total, 1256 articles were selected for the data extraction; 183 unique gene–disease pairs were classified spanning the following phenotypes: hypogonadotropic hypogonadism, ovarian dysgenesis, premature ovarian failure/insufficiency, ovarian hyperstimulation syndrome, empty follicle syndrome, oocyte maturation defect, fertilization failure, early embryonic arrest, recurrent hydatidiform mole, adrenal disfunction and Mullerian aplasia. Twenty-four gene–disease pairs showed definitive evidence, 36 – strong, 19 – moderate, 81 – limited and 23 – showed no evidence. Here, we provide comprehensive, systematic and timely information on the genetic causes of female infertility. Our classification of genetic causes of female reproductive failure will facilitate the composition of up-to-date guidelines on genetic testing in female reproduction, the development of diagnostic gene panels and the advancement of reproductive decision-making.
Successful whole genome amplification (WGA) is a cornerstone of contemporary preimplantation genetic testing (PGT). Choosing the most suitable WGA technique for PGT can be particularly challenging because each WGA technique performs differently in combination with different downstream processing and detection methods. The aim of this review is to provide insight into the performance and drawbacks of DOP-PCR, MDA and MALBAC, as well as the hybrid WGA techniques most widely used in PGT. As the field of PGT is moving towards a wide adaptation of comprehensive massively parallel sequencing (MPS)-based approaches, we especially focus our review on MPS parameters and detection opportunities of WGA-amplified material, i.e., mappability of reads, uniformity of coverage and its influence on copy number variation analysis, and genomic coverage and its influence on single nucleotide variation calling. The ability of MDA-based WGA solutions to better cover the targeted genome and the ability of PCR-based solutions to provide better uniformity of coverage are highlighted. While numerous comprehensive PGT solutions exploiting different WGA types and adjusted bioinformatic pipelines to detect copy number and single nucleotide changes are available, the ones exploiting MDA appear more advantageous. The opportunity to fully analyse the targeted genome is influenced by the MPS parameters themselves rather than the solely chosen WGA.
PurposeTo compare multiple displacement amplification and OmniPlex whole genome amplification technique performance during array comparative genome hybridization (aCGH), Sanger sequencing, SNaPshot and fragment size analysis downstream applications in frame of multifactor embryo preimplantation genetic testing.MethodsPreclinical workup included linked short tandem repeat (STR) marker selection and primer design for loci of interest. It was followed by a family haplotyping, after which an in vitro fertilization preimplantation genetic testing (IVF-PGT) cycle was carried out. A total of 62 embryos were retrieved from nine couples with a confirmed single gene disorder being transmitted in their family with various inheritance traits—autosomal dominant (genes—ACTA2, HTT, KRT14), autosomal recessive (genes—ALOX12B, TPP1, GLB1) and X-linked (genes—MTM1, DMD). Whole genome amplification (WGA) for the day 5 embryo trophectoderm single biopsies was carried out by multiple displacement amplification (MDA) or polymerase chain reaction (PCR)-based technology OmniPlex and was used for direct (Sanger sequencing, fragment size analysis, SNaPshot) and indirect mutation assessment (STR marker haplotyping), and embryo aneuploidy testing by array comparative genome hybridization (aCGH).ResultsFamily haplotyping revealed informative/semi-informative microsatellite markers for all clinical cases for all types of inheritance. Indirect testing gave a persuasive conclusion for all embryos assessed, which was confirmed through direct testing. The overall allele dropout (ADO) rate was higher for PCR-based WGA, and MDA shows a better genomic recovery scale. Five euploid embryos were subjected to elective single embryo transfer (eSET), which resulted in four clinical pregnancies and birth of two healthy children, which proved free of disease causative variants running in the family postnataly.ConclusionsA developed multifactor PGT protocol can be adapted and applied to virtually any genetic condition and is capable of improving single gene disorder preimplantation genetic testing in a patient-tailored manner thus increasing pregnancy rates, saving costs and increasing patient reliability.Electronic supplementary materialThe online version of this article (10.1007/s10815-018-1187-4) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.