The uneven illumination of a Gaussian profile makes quantitative analysis highly challenging in laser-based wide-field fluorescence microscopy. Here we present flat-field illumination (FFI) where the Gaussian beam is reshaped into a uniform flat-top profile using a high-precision refractive optical component. The long working distance and high spatial coherence of FFI allows us to accomplish uniform epi and TIRF illumination for multi-color single-molecule imaging. In addition, high-throughput borderless imaging is demonstrated with minimal image overlap.
Besides the optimization of the laser and processing parameters, the adaptation of the focal intensity distribution offers great potential for a well-defined control of laser processing and for improving the processing results. In this paper, different tailored intensity distributions were discussed with respect to their suitability for femtosecond laser material processing on the micro- and nanoscale such as cutting, marking, and the generation of laser-induced periodic surface structures. It was shown by means of laser processing of stainless steel that the numerical simulations for the beam shaping unit are in good agreement with the experimental results. Also, the suitability of the beam shaping device to work with a scanner and an F-theta lens as commonly used for material processing was demonstrated. In this context, the improvement of the machining results was shown experimentally, and a significant reduction of the machining time was achieved.
Beam shaping is a field of research with growing importance. Therefore, a new refractive beam shaping system is presented. The knowledge gained from analyzing patent systems was used to derive our own improved design. It is compared to a patent system, and some selected results are presented in this work. Furthermore, possibilities to scale the entrance and exit beam diameters with the help of SPA™ Beam Expander Kit and SPA™ AspheriColl (both from asphericon GmbH, Jena, Germany) are shown, so that a modular top-hat generation is achievable. Additionally, the large spectral range in which the beam shaping system is applicable is demonstrated, and it is demonstrated how the beam shaping system can be used to improve the performance of other optical elements that require a top-hat beam profile.
No abstract
Mounting aspheres is often challenging because of the higher sensitivity to decenter and tilt compared with spherical lenses. This paper first describes aspheric surface decenter and tilt error as per ISO 10110 standard. Then, the most common lens mounting and alignment method for aspheric lenses are discussed in detail. Finally, an innovative mounting method that uses surface contact mounting is presented. This autocentering method uses the optical surfaces as mounting interfaces to provide a high level of centering accuracy for aspheric lenses. Centering measurement results for different aspheric lenses mounted using this method are also presented. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.