The incidence of type 1 diabetes (T1D) is increasing worldwide. The onset of T1D usually occurs in childhood and is caused by the selective destruction of insulin-producing pancreatic islet cells (β-cells) by autoreactive T cells, leading to insulin deficiency. Despite advanced research and enormous progress in medicine, the causes of T1D are still not fully understood. Therefore, an extensive online search for scientific research on environmental factors associated with diabetes and the identification of new factors of unexplained etiology has been carried out using the PubMed, Cochrane, and Embase databases. The search results were limited to the past 11 years of research and discovered 143 manuscripts published between 2011 and 2022. Additionally, 21 manuscripts from between 2000 and 2010 and 3 manuscripts from 1974 to 2000 were referenced for historical reference as the first studies showcasing a certain phenomenon or mechanism. More and more scientists are inclined to believe that environmental factors are responsible for the increased incidence of diabetes. Research results show that higher T1D incidence is associated with vitamin D deficiency, a colder climate, and pollution of the environment, as well as the influence of viral, bacterial, and yeast-like fungi infections. The key viral infections affecting the risk of developing T1DM are rubella virus, mumps virus, Coxsackie virus, cytomegalovirus, and enterovirus. Since 2020, i.e., from the beginning of the COVID-19 pandemic, more and more studies have been looking for a link between Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and diabetes development. A better understanding of the role of viral, bacterial, and yeast-like fungi infections related to the risk of T1DM in children and adolescents and the identification of new risk factors, especially those spread by the droplet route, is of great importance for people and families with diabetes.
Ammonia (NH3) is one of the gases adversely affecting the natural environment. The greatest contributor to emissions of this gas to the atmosphere is agricultural activity. The main objective of the study was to assess the progress of sustainable management of ammonia emissions from agriculture in European Union countries. The specific objectives of the article were the following: to analyse and diagnose the level of ammonia emissions from agriculture, to study the diversity of emissions of this gas between countries, to analyse trends in the years 2010–2017 and, above all, to assess the relationship between the level of ammonia emissions from agriculture and the economic conditions of EU countries. The theoretical part of the article describes the causes and effects of, as well as preventive actions against, ammonia emissions from agriculture, whereas the empirical part analyses the problems, trends, variations, and the impact of economic conditions on emissions of this gas in 2010–2017. To evaluate the range of problems discussed, indicators describing ammonia emission levels Y01A and Y01B, as well as indicators characterising economic conditions X01, X02, and X03 have been employed. During the study, the following indicators were analysed: ammonia emissions from agriculture in kilograms per hectare (Y01A), ammonia emissions from agriculture—percentage of total emissions (Y01B), government appropriations or outlays on research and development in agriculture in EUR per capita (X01), agricultural factor income in EUR per annual work unit (AWU) (X02), and real GDP in EUR per capita (X03). The source for the empirical data was information from the European Statistical Office (Eurostat). The analysis covered 28 states of the European Union. In the article, among others, the rate of change indices, coefficients of variation (Vs), measures of distance (D) and range (R), coefficients of asymmetry (A) and kurtosis (K) were calculated, and correlation and regression analysis were performed. The share of agriculture in total ammonia emissions in European Union countries is very high and averages as high as 92%. Most of the countries maintain an upward tendency; a disturbing fact, considering such high ammonia emissions from agriculture. Based on the present analysis, it has also been confirmed that countries with the relatively highest levels of economy and agricultural research and development funding in fact emit more and increasingly more ammonia from agriculture. To avoid the intensification of the adverse effects of this phenomenon, all EU Member States should take effective, efficient, and sustained action to reduce ammonia emission levels.
The use of energy is a precondition for global economic and civilisational development. However, the growing demand for energy is depleting traditional energy resources and, most importantly, causing environmental pollution, mainly through the emission of greenhouse gases. As energy is necessary for the functioning of all sectors of the economy, such as industry, services, transport as well as households, these sectors are the largest contributors to energy consumption. Renewable energy sources are an alternative to generating energy from conventional fossil fuels. The main objective of this paper was to determine and compare the level, trends and variation in energy consumption by different economic sectors in countries of the European Union in 2010–2019. An analysis of the share of renewable energy consumption in different economic sectors was also carried out, as well as an assessment of the relationship of these indicators with the level of economic development of the countries and environmental impacts in the form of greenhouse gas emissions from energy consumption. To explore the topics under discussion, a dozen of indicators have been considered in the article. The source of empirical data collected was the European Statistical Office. The researched period covered the years 2010–2019. The empirical data was statistically analysed. The article considers changes in the values of the studied indicators, differentiation between countries and the results of correlation and regression analysis. As shown by the data from 2010–2019, the countries of the European Union vary significantly in respect of primary and final energy consumption. The highest final energy consumption occurs in the transport sector, followed by slightly lower consumption in the industrial sector and households sector and the lowest but also significant consumption in the commercial and public services sector. Since 2010, total primary and final energy consumption has decreased in the EU (27) countries. Total energy consumption and consumption by individual sectors in modern economies of the EU (27) countries are reflected on the one hand in economic development and on the other—in exacerbation of adverse climate changes. Therefore, all EU Member States, aware of their energy consumption and their own contribution to environmental pollution, should take effective and sustainable corrective action in this area as soon as possible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.