Tomato brown rugose fruit virus (ToBRFV) is a new damaging plant virus of great interest from both an economical and research point of view. ToBRFV is transmitted by contact, remains infective for months, and to-date, no resistant cultivars have been developed. Due to the relevance of this virus, new effective, sustainable, and operator-safe antiviral agents are needed. Thus, 4-hydroxybenzoic acid was identified as the main product of the alkaline autoxidation at high temperature of the methanolic extract of the leaves of C. micranthum, known for antiviral activity. The autoxidized extract and 4-hydroxybenzoic acid were assayed in in vitro experiments, in combination with a mechanical inoculation test of tomato plants. Catechinic acid, a common product of rearrangement of catechins in hot alkaline solution, was also tested. Degradation of the viral particles, evidenced by the absence of detectable ToBRFV RNA and the loss of virus infectivity, as a possible consequence of disassembly of the virus coat protein (CP), were shown. Homology modeling was then applied to prepare the protein model of ToBRFV CP, and its structure was optimized. Molecular docking simulation showed the interactions of the two compounds, with the amino acid residues responsible for CP-CP interactions. Catechinic acid showed the best binding energy value in comparison with ribavirin, an anti-tobamovirus agent.
In intensive strawberry production, monoculture is a common practice worldwide; however, prolonged replanting can cause plant disorders and jeopardize profitable cultivation of this highly valuable crop. To mitigate replanting problems, the strawberry industry is still highly dependent on chemical fumigation. Given the increasing regulatory restrictions and concerns about human and environmental risks from fumigants use, there is a growing interest in the adoption of effective, non-chemical alternatives. Two non-chemical soil fumigation practices, i.e., anaerobic soil disinfestation (ASD) and bio-fumigation with biocide plants (BIOFUM), were tested against chemical fumigation by chloropicrin + 1,3-dichloropropene mixture (STANDARD) and untreated (UNTREAT) control in a 2-year trial established in a commercial strawberry farm in Southern Italy (40°25’ N, 16°42′ E). Overall, the alternative practices provided consistently better results than UNTREAT; whereas, compared to STANDARD, their performance was significantly different in the two years: in 2018/19 season the alternative practices registered a 20% (ASD) and 39% (BIOFUM) marketable yield loss compared to STANDARD, while in the 2019/20 season yield differences were not significant. Although both practices appear promising as eco-friendly alternatives to chemical fumigation, in this short-term trial ASD performed better than BIOFUM both in terms of yield and fruit size, resulting in a more advanced stage for practical adoption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.