Invasive species may exploit a wide range of food sources, thereby fostering their success and hampering mitigation, but the actual degree of opportunism is often unknown. The small hive beetle (SHB), Aethina tumida, is a parasite of honeybee colonies endemic to sub‐Saharan Africa. SHBs have now spread on all habitable continents and can also infest colonies of other social bees. To date, the possible role of solitary bee nests as alternative hosts is unknown. Similarly, flowers as possible alternative food sources are not well understood. Here, we show that SHBs can complete an entire life cycle in association with nests of solitary bees Megachile rotundata. The data also show that flowers can serve as alternative food sources. These results support the opportunistic nature of this invasive species, thereby generating further obstacles for mitigation efforts in the field. It also suggests that SHB invasions may result in more serious consequences for endemic bee fauna than previously thought. This provides further motivation to slow down the global spread of this pest, and to improve its management in areas, where it is established.
The sex ratio of sexually reproducing animal species tends to be 1:1, which is known as Fisher’s principle. However, differential mortality and intraspecific competition during pupation can result in a biased adult sex ratio in insects. The female-biased sex ratio of small hive beetles (SHBs) is known from both laboratory and field studies, but the underlying reasons are not well understood. Here, we used laboratory mass and individual pupation to test if differential mortality between sexes and/or intraspecific interactions can explain this sex ratio. The data show a significant female-biased adult sex ratio in both mass and individual rearing, even when assuming that all dead individuals were males. Our results therefore suggest that neither differential mortality during pupation nor intraspecific interactions are likely to explain the female-biased sex ratio of freshly emerged adult SHBs. We regard it as more likely that either competition during the larval feeding stage or genetic mechanisms are involved. In addition, we compared our data with previously published data on the sex ratio of both freshly emerged and field-collected SHBs to investigate possible gender differences in adult longevity. The data show a significantly greater female bias in the sex ratio upon emergence, compared to field-collected SHBs, suggesting that adult females have a shorter longevity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.