Viral infections cause high morbidity and mortality, threaten public health, and impose a socioeconomic burden. We have seen the recent emergence of SARS‐CoV‐2 (Severe Acute Respiratory Syndrome Coronavirus 2), the causative agent of COVID‐19 that has already infected more than 29 million people, with more than 900 000 deaths since its identification in December 2019. Considering the significant impact of viral infections, research and development of new antivirals and control strategies are essential. In this paper, we summarize 96 antivirals approved by the Food and Drug Administration between 1987 and 2019. Of these, 49 (51%) are used in treatments against human immunodeficiency virus (HIV), four against human papillomavirus, six against cytomegalovirus, eight against hepatitis B virus, five against influenza, six against herpes simplex virus, 17 against hepatitis C virus and one against respiratory syncytial virus. This review also describes future perspectives for new antiviral therapies such as nanotechnologies, monoclonal antibodies and the CRISPR‐Cas system. These strategies are suggested as inhibitors of viral replication by various means, such as direct binding to the viral particle, blocking the infection, changes in intracellular mechanisms or viral genes, preventing replication and virion formation. We also observed that a large number of viral agents have no therapy available and the majority of those approved in the last 32 years are restricted to some groups, especially anti‐HIV. Additionally, the emergence of new viruses and strains resistant to available antivirals has necessitated the formulation of new antivirals.
Background: Staphylococcus aureus is a major cause of a wide diversity of infections in humans, and the expression of Panton-Valentine Leukocidin (PVL) has been associated with severe clinical syndromes. Objectives: The present study aimed to investigate the prevalence of PVL-encoding genes in S. aureus isolated from clinical samples of inpatients with invasive infections in a teaching hospital in Southern Brazil. Furthermore, phenotypic and genotypic characteristics of bacterial isolates were analyzed. Methods: A total of 98 S. aureus isolates recovered from different body sites were characterized according to their antimicrobial susceptibility profile, methicillin-resistance and SCCmec typing, genetic relatedness and occurrence of virulence-encoding genes such as icaA, lukS-PV/lukF-PV and tst. Results: Sixty-eight (69.4%) isolates were classified as methicillin-resistant and among them, four (5.9%) did not harbor the mecA gene. The mecA-harboring methicillin-resistant S. aureus (MRSA) isolates were grouped into SCCmec types I (6.3%), II (64.1%), III (6.3%), IV (15.6%), V (4.7%), and VI (1.6%). One isolate (1.6%) was classified as non-typeable (NT). Seventy isolates (71.4%) were classified as multidrug-resistant. The overall prevalence of virulence-encoding genes was as follows: icaA, 99.0%; tst, 27.5%; and lukS-PV/lukF-PV, 50.0%. The presence of tst gene was significantly higher (p < 0.001) in methicillin-susceptible S. aureus (MSSA) compared to MRSA isolates. Conclusion: The present study reports a high prevalence of multidrug-resistant S. aureus harboring lukS-PV/lukF-PV and tst genes in invasive infections. The continuous monitoring of the antimicrobial susceptibility profile and virulence of S. aureus is an important measure for the control of infections caused by this bacterium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.