More than 100,000 genetic variants are reported to cause Mendelian disease in humans, but the penetrance - the probability that a carrier of the purported disease-causing genotype will indeed develop the disease - is generally unknown. Here we assess the impact of variants in the prion protein gene (PRNP) on the risk of prion disease by analyzing 16,025 prion disease cases, 60,706 population control exomes, and 531,575 individuals genotyped by 23andMe, Inc. We show that missense variants in PRNP previously reported to be pathogenic are at least 30× more common in the population than expected based on genetic prion disease prevalence. While some of this excess can be attributed to benign variants falsely assigned as pathogenic, other variants have genuine effects on disease susceptibility but confer lifetime risks ranging from <0.1% to ~100%. We also show that truncating variants in PRNP have position-dependent effects, with true loss-of-function alleles found in healthy older individuals, supporting the safety of therapeutic suppression of prion protein expression.
To validate the provisional findings of a number of smaller studies and explore additional determinants of characteristic diagnostic investigation results across the entire clinical spectrum of sporadic Creutzfeldt-Jakob disease (CJD), an international collaborative study was undertaken comprising 2451 pathologically confirmed (definite) patients. We assessed the influence of age at disease onset, illness duration, prion protein gene (PRNP) codon 129 polymorphism (either methionine or valine) and molecular sub-type on the diagnostic sensitivity of EEG, cerebral MRI and the CSF 14-3-3 immunoassay. For EEG and CSF 14-3-3 protein detection, we also assessed the influence of the time point in a patient's illness at which the investigation was performed on the likelihood of a typical or positive result. Analysis included a large subset of patients (n = 743) in whom molecular sub-typing had been performed using a combination of the PRNP codon 129 polymorphism and the form of protease resistant prion protein [type 1 or 2 according to Parchi et al. (Parchi P, Giese A, Capellari S, Brown P, Schulz-Schaeffer W, Windl O, Zerr I, Budka H, Kopp N, Piccardo P, Poser S, Rojiani A, Streichemberger N, Julien J, Vital C, Ghetti B, Gambetti P, Kretzschmar H. Classification of sporadic Creutzfeldt-Jakob disease based on molecular and phenotypic analysis of 300 subjects. Ann Neurol 1999; 46: 224-233.)] present in the brain. Findings for the whole group paralleled the subset with molecular sub-typing data available, showing that age at disease onset and disease duration were independent determinants of typical changes on EEG, while illness duration significantly influenced positive CSF 14-3-3 protein detection; changes on brain MRI were not influenced by either of these clinical parameters, but overall, imaging data were less complete and consequently conclusions are more tentative. In addition to age at disease onset and illness duration, molecular sub-type was re-affirmed as an important independent determinant of investigation results. In multivariate analyses that included molecular sub-type, time point of the investigation during a patient's illness was found not to influence the occurrence of a typical or positive EEG or CSF 14-3-3 protein result. A typical EEG was most often seen in MM1 patients and was significantly less likely in the MV1, MV2 and VV2 sub-types, whereas VV2 patients had an increased likelihood of a typical brain MRI. Overall, the CSF 14-3-3 immunoassay was the most frequently positive investigation (88.1%) but performed significantly less well in the very uncommon MV2 and MM2 sub-types. Our findings confirm a number of determinants of principal investigation results in sporadic CJD and underscore the importance of recognizing these pre-test limitations before accepting the diagnosis excluded or confirmed. Combinations of investigations offer the best chance of detection, especially for the less common molecular sub-types such as MV2 and MM2.
IMPORTANCE Early and accurate in vivo diagnosis of Creutzfeldt-Jakob disease (CJD) is necessary for quickly distinguishing treatable from untreatable rapidly progressive dementias and for future therapeutic trials. This early diagnosis is becoming possible using the real-time quaking-induced conversion (RT-QuIC) seeding assay, which detects minute amounts of the disease-specific pathologic prion protein in cerebrospinal fluid (CSF) or olfactory mucosa (OM) samples.OBJECTIVE To develop an algorithm for accurate and early diagnosis of CJD by using the RT-QuIC assay on CSF samples, OM samples, or both. DESIGN, SETTING, AND PARTICIPANTSIn this case-control study, samples of CSF and OM were collected from 86 patients with a clinical diagnosis of probable (n = 51), possible (n = 24), or suspected (n = 11) CJD and 104 negative control samples (54 CSF and 50 OM). The CSF and OM samples were analyzed using conventional RT-QuIC. The CSF samples underwent further testing using improved RT-QuIC conditions. In addition, the diagnostic performance of a novel, easy-to-use, gentle flocked swab for sampling of OM was evaluated. Data were collected from January 1 to June 30, 2015. MAIN OUTCOME AND MEASURES Correlations between RT-QuIC results and the final diagnosis of recruited patients.RESULTS Among the 86 patients (37 men [43%] and 49 women [57%]; mean [SD] age, 65.7 [11.5] years) included for analysis, all 61 patients with sporadic CJD had positive RT-QuIC findings using OM or CSF samples or both for an overall RT-QuIC diagnostic sensitivity of 100% (95% CI, 93%-100%). All patients with a final diagnosis of non-prion disease (71 CSF and 67 OM samples) had negative RT-QuIC findings for 100% specificity (95% CI, 94%-100%). Of 8 symptomatic patients with various mutations causing CJD or Gerstmann-Sträussler-Scheinker syndrome, 6 had positive and 2 had negative RT-QuIC findings for a sensitivity of 75% (95% CI, 36%-96%). CONCLUSIONS AND RELEVANCEA proposed diagnostic algorithm for sporadic CJD combines CSF and OM RT-QuIC testing to provide virtually 100% diagnostic sensitivity and specificity in the clinical phase of the disease.
We applied RT‐QuIC assay to detect α‐synuclein aggregates in cerebrospinal fluid (CSF) of patients with suspected Creutzfeldt–Jakob disease who had a neuropathological diagnosis of dementia with Lewy bodies (DLB) (n = 7), other neurodegenerative diseases with α‐synuclein mixed pathology (n = 20), or without Lewy‐related pathology (n = 49). The test had a sensitivity of 92.9% and specificity of 95.9% in distinguishing α‐synucleinopathies from non‐α‐synucleinopathies. When performed in the CSF of patients with DLB (n = 36), RT‐QuIC was positive in 17/20 with probable DLB, 0/6 with possible DLB, and 0/10 with Alzheimer disease. These results indicate that RT‐QuIC for α‐synuclein is an accurate test for DLB diagnosis.
Real‐time quaking‐induced conversion (RT‐QuIC) has been proposed as a sensitive diagnostic test for sporadic Creutzfeldt–Jakob disease; however, before this assay can be introduced into clinical practice, its reliability and reproducibility need to be demonstrated. Two international ring trials were undertaken in which a set of 25 cerebrospinal fluid samples were analyzed by a total of 11 different centers using a range of recombinant prion protein substrates and instrumentation. The results show almost complete concordance between the centers and demonstrate that RT‐QuIC is a suitably reliable and robust technique for clinical practice. Ann Neurol 2016;80:160–165
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.