ObjectiveThe composition of the healthy human adult gut microbiome is relatively stable over prolonged periods, and representatives of the most highly abundant and prevalent species have been cultured and described. However, microbial abundances can change on perturbations, such as antibiotics intake, enabling the identification and characterisation of otherwise low abundant species.DesignAnalysing gut microbial time-series data, we used shotgun metagenomics to create strain level taxonomic and functional profiles. Community dynamics were modelled postintervention with a focus on conditionally rare taxa and previously unknown bacteria.ResultsIn response to a commonly prescribed cephalosporin (ceftriaxone), we observe a strong compositional shift in one subject, in which a previously unknown species, U
Borkfalki ceftriaxensis, was identified, blooming to 92% relative abundance. The genome assembly reveals that this species (1) belongs to a so far undescribed order of Firmicutes, (2) is ubiquitously present at low abundances in at least one third of adults, (3) is opportunistically growing, being ecologically similar to typical probiotic species and (4) is stably associated to healthy hosts as determined by single nucleotide variation analysis. It was the first coloniser after the antibiotic intervention that led to a long-lasting microbial community shift and likely permanent loss of nine commensals.ConclusionThe bloom of U
B. ceftriaxensis and a subsequent one of Parabacteroides distasonis demonstrate the existence of monodominance community states in the gut. Our study points to an undiscovered wealth of low abundant but common taxa in the human gut and calls for more highly resolved longitudinal studies, in particular on ecosystem perturbations.
Analyzing surface epitopes of single HIV particles holds great potential for the development of vaccine candidates. However, existing technologies do not allow corresponding screens at high throughput. We present here a single-virus droplet-based microfluidics platform enabling sorting of millions of HIV-1 particles with >99% efficiency, based on the expression of epitopes recognized by broadly neutralizing antibodies. We show that virus particles displaying these epitopes can be identified, sorted, and analyzed by next-generation sequencing: an approximately 1,900-fold enrichment of viral particles displaying neutralizing epitopes could be obtained in a single sort, thus opening the way for screening diverse virus libraries with optimal antigenic features for HIV vaccine candidates.
Abstract. The role of ecto-5'-nucleotidase (CD73), an enzyme providing interstitial adenosine, was investigated in B16F10 melanoma progression. Chemical inhibition of CD73 decreased adherence of cells to extracellular matrix proteins in vitro and led to enhanced migration and invasion. Both processes were reversed by adenosine receptor agonists. In CD73-deficient mice, tumor growth was decreased in comparison with that of wild-type animals. Additionally, the vasculature of CD73-inhibited tumors was impaired and neoangiogenesis in Matrigel plugs was reduced. It is, therefore, proposed that although CD73 shows anti-invasive and antimigratory function in B16F10 melanoma cells, its proangiogenic action is prevalent in vivo and may contribute to increased tumor growth.
Summary
We report a droplet microfluidic method to target and sort individual cells directly from complex microbiome samples and to prepare these cells for bulk whole-genome sequencing without cultivation. We characterize this approach by recovering bacteria spiked into human stool samples at a ratio as low as 1:250 and by successfully enriching endogenous
Bacteroides vulgatus
to the level required for de novo assembly of high-quality genomes. Although microbiome strains are increasingly demanded for biomedical applications, a vast majority of species and strains are uncultivated and without reference genomes. We address this shortcoming by encapsulating complex microbiome samples directly into microfluidic droplets and amplifying a target-specific genomic fragment using a custom molecular TaqMan probe. We separate those positive droplets by droplet sorting, selectively enriching single target strain cells. Finally, we present a protocol to purify the genomic DNA while specifically removing amplicons and cell debris for high-quality genome sequencing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.