Increased nutrient inputs can cause shifts in plant community composition and plant functional traits, both of which affect ecosystem function. We studied community‐ and species‐level leaf functional trait changes in a full factorial nitrogen (N), phosphorus (P), and potassium (K) fertilization experiment in a semi‐arid grassland. Nitrogen was the only nutrient addition to significantly affect leaf functional traits, and N addition increased community‐weighted specific leaf area (SLA) by 19%, leaf chlorophyll content by 34%, height by 26%, and leaf dry matter content (LDMC) decreased by 11% while leaf thickness and toughness did not change significantly. At the species level, most species contributed to the community‐weighted trait and increased in SLA, chlorophyll, height, and LDMC with N addition. These intraspecific changes in functional traits account for 51–71% of the community‐level changes in SLA, chlorophyll, plant height, and LDMC. The remaining change is due to species abundance changes; the two most abundant species (Bouteloua gracilis and Carex filifolia) decreased in abundance with N addition while subdominant species increased in abundance. We also found annual variation in SLA, chlorophyll, plant height, and LDMC to be as important in influencing traits as N addition, likely due to differences in precipitation. Aboveground net primary productivity (ANPP) did not change significantly with N addition. However, N addition caused a 34% increase in leaf area index (LAI) and a 67% increase in canopy chlorophyll density. We demonstrate that nitrogen‐induced changes in both functional traits and species abundances magnify ANPP changes in LAI and canopy chlorophyll density. Therefore, ANPP underestimates N addition‐induced ecosystem‐level changes in the canopy vegetation.
Neonicotinoid pesticides are well-known for their sublethal effects on insect behavior and physiology. Recent work suggests neonicotinoids can impair insect olfactory processing, with potential downstream effects on behavior and possibly survival. However, it is unclear whether impairment occurs during peripheral olfactory detection, during information processing in central brain regions, or in both contexts. We used Drosophila melanogaster to explore the potential for neonicotinoids to disrupt olfaction by conducting electrophysiological analyses of single neurons and whole antennae of flies exposed to varying concentrations of the neonicotinoid imidacloprid (IMD) that were shown to cause relative differences in fly survival. Our results demonstrated that IMD exposure significantly reduced the activity of a single focal olfactory neuron and delayed the return to baseline activity of the whole antenna. To determine if IMD also impacts olfactory-guided behavior, we compared flies’ relative preference for odor sources varying in ethanol content. Flies exposed to IMD had a greater relative preference for ethanol-laced pineapple juice than control flies, demonstrating that neuronal shifts induced by IMD that we observed are associated with changes in relative preference. Given the interest in the sensory impacts of agrochemical exposure on wild insect behavior and physiology, we highlight the potential of Drosophila as a tractable model for investigating the effects of pesticides at scales ranging from single-neuron physiology to olfactory-guided behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.