Previous animal models have illustrated that reduced cortical activity in the developing brain has cascading activity-dependent effects on the microstructural organization of the spinal cord. A limited number of studies have attempted to translate these findings to humans with cerebral palsy (CP). Essentially, the aberrations in sensorimotor cortical activity in those with CP could have an adverse effect on the spinal cord microstructure. To investigate this knowledge gap, we utilized magnetoencephalographic (MEG) brain imaging to quantify motor-related oscillatory activity in fourteen adults with CP and sixteen neurotypical (NT) controls. A subset of these participants also underwent cervical-thoracic spinal cord MRI. Our results showed that the strength of the peri-movement beta desynchronization and the post-movement beta rebound were each weaker in the adults with CP relative to the controls, and these weakened responses were associated with poorer task performance. Additionally, our results showed that the strength of the peri-movement beta response was associated with the total cross-sectional area of the spinal cord and the white matter cross-sectional area. Altogether these results suggest that the altered sensorimotor cortical activity seen in CP may result in activity-dependent plastic changes within the spinal cord microstructure, which could ultimately contribute to the sensorimotor deficits seen in this population.
Cerebral palsy is the most common pediatric neurological disorder and results in extensive impairment to the sensorimotor system. However, these individuals also experience increased pain perception, resulting in decreased quality of life. In the current study, we utilized magnetoencephalographic brain imaging to examine whether alterations in spontaneous neural activity predict the level of pain experienced in a cohort of 38 individuals with spastic diplegic cerebral palsy and 67 neurotypical controls. Participants completed five minutes of an eyes closed resting-state paradigm while undergoing a magnetoencephalography recording. The magnetoencephalographic data were then source imaged, and the power within the delta (2–4 Hz), theta (5–7 Hz), alpha (8–12 Hz), beta (15–29 Hz), low gamma (30–59 Hz), and high gamma (60–90 Hz) frequency bands were computed. The resulting power spectral density maps were analyzed vertex-wise to identify differences in spontaneous activity between groups. Our findings indicated that spontaneous cortical activity was altered in the participants with cerebral palsy in the delta, alpha, beta, low gamma, and high gamma bands across the occipital, frontal, and secondary somatosensory cortical areas (all pFWE < 0.05). Furthermore, we also found that the altered beta band spontaneous activity in the secondary somatosensory cortices predicted heightened pain perception in the individuals with cerebral palsy (p = 0.039). Overall, these results demonstrate that spontaneous cortical activity within individuals with cerebral palsy is altered in comparison to their neurotypical peers and may predict increased pain perception in this patient population. Potentially, changes in spontaneous resting-state activity may be utilized to measure the effectiveness of current treatment approaches that are directed at reducing the pain experienced by individuals with cerebral palsy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.