Numerous studies of motor control have confirmed beta and gamma oscillations in the primary motor cortices during basic movements. These responses include a robust beta decrease that precedes and extends through movement onset, a transient gamma response that coincides with the movement, and a post-movement beta rebound (PMBR) response that occurs after movement offset. While the existence of these responses has been confirmed by many studies, very few studies have examined their developmental trajectory. In the current study, we utilized magnetoencephalography (MEG) to investigate age-related changes in sensorimotor cortical oscillations in a large cross-section of children and adolescents (n = 94; age range = 9 -15 years-old). All participants performed a stimulus detection task with their right finger and the resulting MEG data were examined using oscillatory analysis methods and imaged using a beamformer. Consistent with adult studies, these youth participants exhibited characteristic beta (16-24 Hz) decreases prior to and during movement, as well as PMBR responses following movement offset, and a transient gamma (74-84 Hz) response during movement execution. Our primary findings were that the strength of the PMBR increased with age, while the strength of the gamma synchronization decreased with chronological age. In addition, the strength of each motor-related oscillatory response was significantly correlated with the power of spontaneous activity in the same frequency range and same voxel. This was the case for all three oscillatory responses. In conclusion, we investigated motor-related oscillatory activity in the largest cohort of children and adolescents reported to date, and our results indicated that beta and gamma cortical oscillations continue to develop as children transition into adolescents, and that these responses may not be fully matured until young to middle adulthood.
Adolescents demonstrate increasing mastery of motor actions with age. One prevailing hypothesis is that maturation of the somatosensory system during adolescence contributes to the improved motor control. However, limited efforts have been made to determine if somatosensory cortical processing is different in adolescents during movement. In this study, we used magnetoencephalographic brain imaging to begin addressing this knowledge gap by applying an electrical stimulation to the tibial nerve as adolescents (Age = 14.8 ± 2.5 yrs.) and adults (Age = 36.8 ± 5.0 yrs.) produced an isometric ankle plantarflexion force, or sat with no motor activity. Our results showed strong somatosensory cortical oscillations for both conditions in the alpha-beta (8–30 Hz) and gamma (38–80 Hz) ranges that occurred immediately after the stimulation (0–125 ms), and a beta (18–26 Hz) oscillatory response shortly thereafter (300–400 ms). Compared with the passive condition, all of these frequency specific cortical oscillations were attenuated while producing the ankle force. The attenuation of the alpha-beta response was greater in adolescents, while the adults had a greater attenuation of the beta response. These results imply that altered attenuation of the somatosensory cortical oscillations might be central to the under-developed somatosensory processing and motor performance characteristics in adolescents.
ABBREVIATIONS CSACross-sectional area MTR Magnetization transfer ratio AIM To quantify the microstructural differences in the cervical-thoracic spinal cord of adults with cerebral palsy (CP).METHOD Magnetic resonance imaging of the proximal spinal cord (C6-T3) was conducted on a cohort of adults with CP (n=13; mean age=31y 11mo, standard deviation [SD] 8y 7mo; range=20y 8mo-47y 6mo; eight females, five males) and population norm adult controls (n=16; mean age=31y 4mo, SD 9y 9mo; range=19y 4mo-49y 5mo; seven females, nine males). The cross-sectional area (CSA) of the spinal cord, gray and white matter, magnetization transfer ratio (MTR), and fractional anisotropy of the cuneatus and corticospinal tracts were calculated. RESULTSThe total spinal cord CSA and proportion of the spinal cord gray matter CSA were significantly decreased in the adults with CP. The corticospinal tracts' MTR was lower in the adults with CP. Individuals that had reduced gray matter also tended to have reduced MTR in their corticospinal tracts (r=0.42, p=0.029) and worse hand dexterity clinical scores (r=0.53, p=0.004).INTERPRETATION These results show that there are changes in the spinal cord microstructure of adults with CP. Ultimately, these microstructural changes play a role in the extent of the hand sensorimotor deficits seen in adults with CP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.