To examine the factors that affect tolerance to high internal salt concentrations, two tetraploid wheat genotypes that differ in the degree of salt-induced leaf injury (Wollaroi and Line 455) were grown in 150 mM NaCl for 4 weeks. Shoot biomass of both genotypes was substantially reduced by salinity, but genotypic differences appeared only after 3 weeks, when durum cultivar Wollaroi showed greater leaf injury and a greater reduction in biomass than Line 455. Ion accumulation, water relations, chlorophyll fluorescence and gas exchange were followed on one leaf (leaf 3) throughout its life. Salinity caused a large decrease in stomatal conductance (gs) of both genotypes. This was not due to poor water relations, as leaf turgor of both genotypes was higher in the salt treatment than in controls, so chemical signals were likely to have caused the decrease in gs. Reductions in assimilation rate were initially due to gs and, with time, were due to a combination of stomatal and non-stomatal limitations. The non-stomatal limitations were associated with a build up of Na+ above 250 mM. The efficiency of PSII photochemistry in Line 455 was unaffected throughout. However, in Wollaroi, the potential and actual quantum yield of PSII photochemistry began to decline as the leaf aged and the thermal energy dissipation of excess light energy (NPQ) increased. This coincided with high Na+ and Cl– concentrations in the leaf and with chlorophyll degradation, indicating that these later reductions in CO2 assimilation in Wollaroi were a consequence of a direct toxic ion effect. The earlier reduction in CO2 assimilation and greater leaf injury explain why growth of Wollaroi was less than Line 455. The most sensitive indicator of salinity stress was gs, followed by CO2 assimilation, with fluorescence parameters other than NPQ being no more sensitive than chlorophyll itself
Increased salt tolerance is needed for crops grown in areas at risk of salinisation. This requires new genetic sources of salt tolerance, and more efficient techniques for identifying salt-tolerant germplasm, so that new genes for tolerance can be introduced into crop cultivars. Screening a large number of genotypes for salt tolerance is not easy. Salt tolerance is achieved through the control of salt movement into and through the plant, and salt-specific effects on growth are seen only after long periods of time. Early effects on growth and metabolism are likely due to osmotic effects of the salt, that is to the salt in the soil solution. To avoid the necessity of growing plants for long periods of time to measure biomass or yield, practical selection techniques can be based on physiological traits. We illustrate this with current work on durum wheat, on selection for the trait of sodium exclusion. We have explored a wide range of genetic diversity, identified a new source of sodium exclusion, confirmed that the trait has a high heritability, checked for possible penalties associated with the trait, and are currently developing molecular markers. This illustrates the potential for marker-assisted selection based on sound physiological principles in producing salt-tolerant crop cultivars. The problem
Aims: To characterize bacteria associated with Zn/Cd‐accumulating Salix caprea regarding their potential to support heavy metal phytoextraction. Methods and Results: Three different media allowed the isolation of 44 rhizosphere strains and 44 endophytes, resistant to Zn/Cd and mostly affiliated with Proteobacteria, Actinobacteria and Bacteroidetes/Chlorobi. 1‐Aminocyclopropane‐1‐carboxylic acid deaminase (ACCD), indole acetic acid and siderophore production were detected in 41, 23 and 50% of the rhizosphere isolates and in 9, 55 and 2% of the endophytes, respectively. Fifteen rhizosphere bacteria and five endophytes were further tested for the production of metal‐mobilizing metabolites by extracting contaminated soil with filtrates from liquid cultures. Four Actinobacteria mobilized Zn and/or Cd. The other strains immobilized Cd or both metals. An ACCD‐ and siderophore‐producing, Zn/Cd‐immobilizing rhizosphere isolate (Burkholderia sp.) and a Zn/Cd‐mobilizing Actinobacterium endophyte were inoculated onto S. caprea. The rhizosphere isolate reduced metal uptake in roots, whereas the endophyte enhanced metal accumulation in leaves. Plant growth was not promoted. Conclusions: Metal mobilization experiments predicted bacterial effects on S. caprea more reliably than standard tests for plant growth‐promoting activities. Significance and Impact of the Study: Bacteria, particularly Actinobacteria, associated with heavy metal‐accumulating Salix have the potential to increase metal uptake, which can be predicted by mobilization experiments and may be applicable in phytoremediation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.