Aims: To characterize bacteria associated with Zn/Cd‐accumulating Salix caprea regarding their potential to support heavy metal phytoextraction. Methods and Results: Three different media allowed the isolation of 44 rhizosphere strains and 44 endophytes, resistant to Zn/Cd and mostly affiliated with Proteobacteria, Actinobacteria and Bacteroidetes/Chlorobi. 1‐Aminocyclopropane‐1‐carboxylic acid deaminase (ACCD), indole acetic acid and siderophore production were detected in 41, 23 and 50% of the rhizosphere isolates and in 9, 55 and 2% of the endophytes, respectively. Fifteen rhizosphere bacteria and five endophytes were further tested for the production of metal‐mobilizing metabolites by extracting contaminated soil with filtrates from liquid cultures. Four Actinobacteria mobilized Zn and/or Cd. The other strains immobilized Cd or both metals. An ACCD‐ and siderophore‐producing, Zn/Cd‐immobilizing rhizosphere isolate (Burkholderia sp.) and a Zn/Cd‐mobilizing Actinobacterium endophyte were inoculated onto S. caprea. The rhizosphere isolate reduced metal uptake in roots, whereas the endophyte enhanced metal accumulation in leaves. Plant growth was not promoted. Conclusions: Metal mobilization experiments predicted bacterial effects on S. caprea more reliably than standard tests for plant growth‐promoting activities. Significance and Impact of the Study: Bacteria, particularly Actinobacteria, associated with heavy metal‐accumulating Salix have the potential to increase metal uptake, which can be predicted by mobilization experiments and may be applicable in phytoremediation.
The effects of soil cadmium (Cd) contamination on Cd accumulation and distribution, growth and physiological responses of sunflower plants were investigated. Plants were subject to six levels of soil contamination (from 2.5 to 15 mg Cd kg/soil) with an untreated control, from the emergence of the cotyledon leaves until the harvest, when plants were at the flower bud stage. An overall increase of Cd concentration was found in all tissues of the plants (roots, stem, young, mature and old leaves) by increasing the Cd contamination in the soil. Regardless of treatments, Cd concentration in roots always exceeded those in the aboveground dry matter with a low translocation from roots to shoots. At early stage of growth, Cd concentration in plants was higher than at the flower bud stage. Soil Cd contamination did not affect plant growth, relative water content and gas exchange parameters. Negative and significant correlation was only found between Cd concentration in the young leaves and chlorophyll concentration at the end of vegetative growing stage. Roots and old leaves are the main metal sinks suggesting a defense or tolerance mechanism of the plants to avoid toxic levels in physiologically most active apical tissues. These results should be tested in open field to verify the suitability of sunflower in the area of phytotechnologies.
Although the beneficial effects on growth and trace element accumulation in Salix spp. inoculated with microbes are well known, little information is available on the interactions among trace elements and macronutrients. The main purpose of this study was to assess the effect of phytoaugmentation with the rhizobacteria Agromyces sp., Streptomyces sp., and the combination of each of them with the fungus Cadophora finlandica on biomass production and the accumulation of selected trace elements (Zn, Cd, Fe) and macronutrients (Ca, K, P and Mg) in Salix caprea grown on a moderately polluted soil. Dry matter production was significantly enhanced only upon inoculation with Agromyces sp. Regarding the phytoextraction of Cd and Zn, shoot concentrations were mostly increased after inoculation with Streptomyces sp. and Agromyces sp. + C. finlandica. These two treatments also showed higher translocation factors from roots to the leaves for both Cd and Zn. The accumulation of Cd and Zn in shoots was related to increased concentrations of K. This suggests that microorganisms that contribute to enhanced phytoextraction of Cd and Zn affect also the solubility and thus phytoavailability of K. This study suggests that the phytoextraction of Zn and Cd can be improved by inoculation with selected microbial strains.
Eggplant contains glycoalkaloids (GAs), a class of nitrogen-containing secondary metabolites of great structural variety that may have both adverse and beneficial biological effects. In this study, we performed a complete survey of GAs and their malonylated form, in two genotypes of eggplants: A commercial cultivated type, Mirabella (Mir), with purple peel and bitter taste and a local landrace, named Melanzana Bianca di Senise (Sen), characterized by white peel with purple strip and a typical sweet aroma. Besides the analysis of their morphological traits, nineteen glycoalkaloids were tentatively identified in eggplant berry extracts based upon LC-ESI-FTICR-MS analysis using retention times, elution orders, high-resolution mass spectra, as well as high-resolution fragmentation by IRMPD. The relative signal intensities (i.e., ion counts) of the GAs identified in Mir and Sen pulp extracts showed as solamargine, and its isomers are the most abundant. In addition, anticholinesterase and antioxidant activities of the extracts were evaluated. Pulp tissue was found to be more active in inhibiting acetylcholinesterase enzyme than peel showing an inhibitory effect higher than 20% for Mir pulp. The identification of new malonylated GAs in eggplant is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.