It is established that the interaction between microenvironment and cancer cells has a critical role in tumor development, given the dependence of neoplastic cells on stromal support. However, how this communication promotes the activation of normal (NFs) into cancer-associated fibroblasts (CAFs) is still not well understood. Most microRNA (miRNA) studies focused on tumor cell, but there is increasing evidence of their involvement in reprogramming NFs into CAFs. Here we show that miR-9, upregulated in various breast cancer cell lines and identified as pro-metastatic miRNA, affects the properties of human breast fibroblasts, enhancing the switch to CAF phenotype, thus contributing to tumor growth. Expressed at higher levels in primary triple-negative breast CAFs versus NFs isolated from patients, miR-9 improves indeed migration and invasion capabilities when transfected in immortalized NFs; viceversa, these properties are strongly impaired in CAFs upon miR-9 inhibition. We also demonstrate that tumor-secreted miR-9 can be transferred via exosomes to recipient NFs and this uptake results in enhanced cell motility. Moreover, we observed that this miRNA is also secreted by fibroblasts and in turn able to alter tumor cell behavior, by modulating its direct target E-cadherin, and NFs themselves. Consistently with the biological effects observed, gene expression profiles of NFs upon transient transfection with miR-9 show the modulation of genes mainly involved in cell motility and extracellular matrix remodeling pathways. Finally, we were able to confirm the capability of NFs transiently transfected with miR-9 to promote in vivo tumor growth. Taken together, these data provide new insights into the role of miR-9 as an important player in the cross-talk between cancer cells and stroma.
Flagellin, the structural protein subunit of the bacterial flagellum, is specifically recognized by TLR-5 and has potent immunomodulatory effects. The antitumor effects of purified Salmonella typhimurium flagellin were evaluated in mice transplanted s.c. with a weakly immunogenic murine tumor or with its variant stably transfected to express the highly antigenic human HER-2 oncoprotein. Peritumoral administration of flagellin 8–10 days after tumor implantation did not affect the growth rate of the weakly immunogenic tumor but significantly inhibited growth of the antigenic variant tumor. In contrast, flagellin administered at the time of implantation of the antigenic tumor led to accelerated tumor growth. These contrasting effects of flagellin on tumor growth correlated with the type of immune response induced; i.e., late flagellin administration was associated with an increased IFN-γ:IL-4 ratio and the decreased frequency of CD4+CD25+ T regulatory cells, whereas flagellin treatment at the time of tumor implantation decreased the IFN-γ:IL-4 ratio and increased CD4+CD25+ T cell frequency. When the early flagellin treatment was combined with administration of CpG-containing oligodeoxynucleotides, tumor growth was completely suppressed, indicating synergy between flagellin and CpG-containing oligodeoxynucleotides. Together, these data provide evidence that flagellin can have contrasting effects on tumor growth.
Several transgenic mice models solidly support the hypothesis that HER2 (ERBB2) overexpression or mutation promotes tumorigenesis. Recently, a HER2 splice variant lacking exon-16 (Δ16HER2) has been detected in human breast carcinomas. This alternative protein, a normal byproduct of HER2, has an increased transforming potency compared to wild-type (wt) HER2 receptors. To examine the ability of Δ16HER2 to transform mammary epithelium in vivo and to monitor Δ16HER2-driven tumorigenesis in live mice, we generated and characterized a mouse line that transgenically expresses both human Δ16HER2 and firefly luciferase under the transcriptional control of the MMTV promoter. All the transgenic females developed multifocal mammary tumors with a rapid onset and an average latency of 15.11 weeks. Immunohistochemical analysis revealed the concurrent expression of luciferase and the human Δ16HER2 oncogene only in the mammary gland and in strict correlation with tumor development. Transgenic Δ16HER2 expressed on the tumor cell plasma membrane from spontaneous mammary adenocarcinomas formed constitutively active homodimers able to activate the oncogenic signal transduction pathway mediated through Src kinase. These new transgenic animals demonstrate the ability of the human Δ16HER2 isoform to transform “per se” mammary epithelium in vivo. The high tumor incidence as well as the short latency strongly suggests that the Δ16HER2 splice variant represents the transforming form of the HER2 oncoprotein.
Enteroendocrine cells are known primarily for their production of hormones that affect digestion, but they might also be implicated in sensing and neutralizing or expelling pathogens. We evaluate the expression of TLRs and the response to specific agonists in terms of cytokines, defensins, and hormones in enteroendocrine cells. The mouse enteroendocrine cell line STC-1 and C57BL/6 mice are used for in vitro and in vivo studies, respectively. The presence of TLR4, 5, and 9 is investigated by RT-PCR, Western blot, and immunofluorescence analyses. Activation of these receptors is studied evaluating keratinocyte-derived chemokine, defensins, and cholecystokinin production in response to their specific agonists. In this study, we show that the intestinal enteroendocrine cell line STC-1 expresses TLR4, 5, and 9 and releases cholecystokinin upon stimulation with the respective receptor agonists LPS, flagellin, and CpG-containing oligodeoxynucleotides. Release of keratinocyte-derived chemokine and β-defensin 2 was also observed after stimulation of STC-1 cells with the three TLR agonists, but not with fatty acids. Consistent with these in vitro data, mice showed increased serum cholecystokinin levels after oral challenge with LPS, flagellin, or CpG oligodeoxynucleotides. In addition to their response to food stimuli, enteroendocrine cells sense the presence of bacterial Ags through TLRs and are involved in neutralizing intestinal bacteria by releasing chemokines and defensins, and maybe in removing them by releasing hormones such as cholecystokinin, which induces contraction of the muscular tunica, favoring the emptying of the distal small intestine.
Organization of cancer cells into endothelial-like cell-lined structures to support neovascularization and to fuel solid tumors is a hallmark of progression and poor outcome. In triple-negative breast cancer (TNBC), PDGFRb has been identified as a key player of this process and is considered a promising target for breast cancer therapy. Thus, we aimed at investigating the role of miRNAs as a therapeutic approach to inhibit PDGFRb-mediated vasculogenic properties of TNBC, focusing on miR-9 and miR-200. In MDA-MB-231 and MDA-MB-157 TNBC cell lines, miR-9 and miR-200 promoted and inhibited, respectively, the formation of vascular-like structures in vitro. Induction of endogenous miR-9 expression, upon ligand-dependent stimulation of PDGFRb signaling, promoted significant vascular sprouting of TNBC cells, in part, by direct repression of STARD13. Conversely, ectopic expression of miR-200 inhibited this sprouting by indirectly reducing the protein levels of PDGFRb through the direct suppression of ZEB1. Notably, in vivo miR-9 inhibition or miR-200c restoration, through either the generation of MDA-MB-231-stable clones or peritumoral delivery in MDA-MB-231 xenografted mice, strongly decreased the number of vascular lacunae. Finally, IHC and immunofluorescence analyses in TNBC specimens indicated that PDGFRb expression marked tumor cells engaged in vascular lacunae. In conclusion, our results demonstrate that miR-9 and miR-200 play opposite roles in the regulation of the vasculogenic ability of TNBC, acting as facilitator and suppressor of PDGFRb, respectively. Moreover, our data support the possibility to therapeutically exploit miR-9 and miR-200 to inhibit the process of vascular lacunae formation in TNBC. Cancer Res; 76(18); 5562-72. Ó2016 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.