The present study tested the hypothesis that anxious apprehension involves more left- than right-hemisphere activity and that anxious arousal is associated with the opposite pattern. Behavioral and fMRI responses to threat stimuli in an emotional Stroop task were examined in nonpatient groups reporting anxious apprehension, anxious arousal, or neither. Reaction times were longer for negative than for neutral words. As predicted, brain activation distinguished anxious groups in a left inferior frontal region associated with speech production and in a right-hemisphere inferior temporal area. Addressing a second hypothesis about left-frontal involvement in emotion, distinct left frontal regions were associated with anxious apprehension versus processing of positive information. Results support the proposed distinction between the two types of anxiety and resolve an inconsistency about the role of left-frontal activation in emotion and psychopathology.
Functional differentiation of dorsal (dACC) and rostral (rACC) anterior cingulate cortex for cognitive and emotional function has received considerable indirect support. Using fMRI, parallel tasks, and within-subject analysis, the present study directly tested the proposed specialization of ACC subdivisions. A Task x Region interaction confirmed more dACC activation during color-word distractors and more rACC activation during emotion-word distractors. Activity in ACC subdivisions differentially predicted behavioral performance. Connectivity with prefrontal and limbic regions also supported distinct dACC and rACC roles. Findings provide direct evidence for differential engagement of ACC subdivisions in cognitive and emotional processing and for differential functional connectivity in the implementation of cognitive control and emotion regulation. Results point to an anatomical and functional continuum rather than segregated operations.
A network of brain regions has been implicated in top-down attentional control, including left dorsolateral prefrontal cortex (LDLPFC) and dorsal anterior cingulate cortex (dACC). The present experiment evaluated predictions of the cascade-of-control model (Banich, 2009), which predicts that during attentionally-demanding tasks, LDLPFC imposes a top-down attentional set which precedes late-stage selection performed by dACC. Furthermore, the cascade-of-control model argues that dACC must increase its activity to compensate when top-down control by LDLPFC is poor. The present study tested these hypotheses using fMRI and dense-array ERP data collected from the same 80 participants in separate sessions. fMRI results guided ERP source modeling to characterize the time course of activity in LDLPFC and dACC. As predicted, dACC activity subsequent to LDLPFC activity distinguished congruent and incongruent conditions on the Stroop task. Furthermore, when LDLPFC activity was low, the level of dACC activity was related to performance outcome. These results demonstrate that dACC responds to attentional demand in a flexible manner that is dependent on the level of LDLPFC activity earlier in a trial. Overall, results were consistent with the temporal course of regional brain function proposed by the cascade-of-control model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.