Infectious and inflammatory pulmonary diseases are a leading cause of morbidity and mortality worldwide. Although infrequently used in this setting, molecular imaging may significantly contribute to their diagnosis using techniques like single photon emission tomography (SPET), positron emission tomography (PET) with computed tomography (CT) or magnetic resonance imaging (MRI) with the support of specific or unspecific radiopharmaceutical agents. 18F-Fluorodeoxyglucose (18F-FDG), mostly applied in oncological imaging, can also detect cells actively involved in infectious and inflammatory conditions, even if with a low specificity. SPET with nonspecific (e.g., 67Gallium-citrate (67Ga citrate)) and specific tracers (e.g., white blood cells radiolabeled with 111Indium-oxine (111In) or 99mTechnetium (99mTc)) showed interesting results for many inflammatory lung diseases. However, 67Ga citrate is unfavorable by a radioprotection point of view while radiolabeled white blood cells scan implies complex laboratory settings and labeling procedures. Radiolabeled antibiotics (e.g., ciprofloxacin) have been recently tested, although they seem to be quite unspecific and cause antibiotic resistance. New radiolabeled agents like antimicrobic peptides, binding to bacterial cell membranes, seem very promising. Thus, the aim of this narrative review is to provide a comprehensive overview about techniques, including PET/MRI, and tracers that can guide the clinicians in the appropriate diagnostic pathway of infectious and inflammatory pulmonary diseases.
Purpose: The hypothesis of the study was that a multidisciplinary approach involving experienced specialists in diffuse parenchymal lung disease might improve the diagnosis of patients with COVID-19 pneumonia.Methods: Two pulmonologists, two radiologists, and two pathologists reviewed 27 patients affected by severe COVID-19 pneumonia as the main diagnosis made by non-pulmonologists. To evaluate whether the contribution of specialists, individually and/or in combination, might modify the original diagnosis, a three-step virtual process was planned. The whole lung examination was considered the gold standard for the final diagnosis. The probability of a correct diagnosis was calculated using a model based on generalized estimating equations. The effectiveness of a multidisciplinary diagnosis was obtained by comparing diagnoses made by experienced pulmonologists with those made by non-pulmonologists.Results: In 19% of cases, the diagnosis of COVID-19-related death was mainly incorrect. The probability of a correct diagnosis increased strikingly from an undedicated clinician to an expert specialist. Every single specialist made significantly more correct diagnoses than any non-pulmonologist. The highest level of accuracy was achieved by the combination of 3 expert specialists (p = 0.0003).Conclusion: The dynamic interaction between expert specialists may significantly improve the diagnostic confidence and management of patients with COVID-19 pneumonia.
ObjectivesPatients with connective tissue diseases can develop interstitial lung disease (ILD), leading to a progressive fibrosing ILD (PF-ILD) phenotype in some cases. We aimed to investigate the occurrence of PF-ILD in idiopathic inflammatory myopathies (IIMs), and factors potentially predicting this phenotype. Secondary aims were to assess the radiological pattern and factors associated with IIMs-ILD.MethodsPatients with IIMs from our multicentric prospective cohort were retrospectively evaluated. Data were recorded at IIMs and ILD diagnosis, and during follow-up. Patients with ILD were classified according to the predominant high-resolution CT (HRCT) pattern: non-specific interstitial pneumonia (NSIP), usual interstitial pneumonia (UIP) and organising pneumonia (OP). PF-ILD was defined according to the 2022 American Thoracic Society (ATS), European Respiratory Society (ERS), Japanese Respiratory Society (JRS) and Latin American Thoracic Society (ALAT) guidelines. Univariate and multivariate analyses were performed to identify factors associated to ILD and to PF-ILD.ResultsOf 253 patients with IIMs, 125 (49%) had ILD: 99 (78%) at IIMs diagnosis and 26 (22%) during follow-up (21/26 within 5 years). Multivariate analysis identified anti-Jo-1, anti-MDA5, anti-Ro52, high score on manual muscle test, mechanic’s hands and Raynaud’s phenomenon as independently associated with ILD. The predominant HRCT pattern was NSIP (50% of patients), followed by UIP (28%) and OP (22%). At 1-year follow-up, PF-ILD occurred in 18% of IIMs-ILD. PF-ILD was predicted by anti-MDA5, heliotropic rash, xerostomia and xerophthalmia at univariate but not at multivariate analysis.ConclusionPatients with IIM should be carefully screened for ILD at IIMs diagnosis and yearly during follow-up. All patients with IIMs-ILD should be carefully monitored to capture ILD progression since a consistent proportion of them are expected to develop PF-ILD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.