The solid forms emerging from an experimental screening programme of 1,10-phenanthroline (o-phen), a heavily used bidentate ligand, and interconversion pathways of its two neat forms, the monohdyrate (Hy1) and four solvates with acetone, chloroform, dichloromethane and 1,2-dichloroethane are described. The solvates, identified and characterised with thermoanalyical methods, are unstable when removed from the mother liquor and desolvate at room temperature depending on the relative humidity (RH) to anhydrate I° (AH I°) or transform to Hy1. At ambient conditions Hy1, a stoichiometric channel hydrate, is the thermodynaically most stable o-phen solid form. The enthalpically stabilised Hy1 melts at 102 °C or dehydrates to AH I° at RH < 10% at 25 °C. The potential energy difference between Hy1 and AH I° was calculated to be approx. 15 kJ mol–1. The second anhydrate polymorph (AH II) can be obatined from the quench cooled melt of o-phen, but is unstable at ambient conditions and transforms wihtin minutes to either AH I° or Hy1. The two neat polymorphs are enantiotropically related and water-free o-phen transforms to Hy1 at RH > 16%. The structural and stablity features of the solid forms, in paricular Hy1, are unravelled by a combination of experimental (thermal analysis, moisture sorption/desorption and storage experiments, infrared spectroscopy and powder X-ray diffraction) and computational modelling (crystal structure prediction and lattice energy calculations), providing a consistent picture why o-phen forms a very stable Z’ = 3 channel hydrate.
The moisture- and temperature dependent stabilities and interrelation pathways of the practically relevant solid forms of o-phenanthroline HCl (1) and neocuproine HCl (2) were investigated using thermal analytical techniques (HSM, DSC and TGA) and gravimetric moisture sorption/desorption studies. The experimental stability data were correlated with the structural changes observed upon dehydration and the pairwise interaction and lattice energies calculated. For 1 the monohydrate was identified as the only stable form under conditions of RH typically found during production and storage, but at RH values >80% deliquescence occurs. The second compound, 2, forms an anhydrate and two different hydrates, mono- (2-Hy1) and trihydrate (2-Hy3). The 2-Hy1 structure was solved from SCXRD data and the anhydrate structure derived from a combination of PXRD and CSP. Depending on the environmental conditions (moisture) either 2-Hy1 or 2-Hy3 is the most sable solid form of 2 at RT. The monohydrates 1-Hy1 and 2-Hy1 show a high enthalpic stabilization (≥20 kJ mol−1) relative to the anhydrates. The anhydrates are unstable at ambient conditions and readily transform to the monohydrates even in the presence of traces of moisture. This study demonstrates how the right combination of experiment and theory can unravel the properties and interconversion pathways of solid forms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.