Osteoarthritis (OA) is a multifactorial degenerative pathology, whose progression is exacerbated by pro-inflammatory cytokines signaling. Among the changes triggered in chondrocytes during inflammation, modified expression of tiny epigenetic regulators as microRNAs was shown having deleterious implications for articular cartilage. Aim of the present study was to identify differentially expressed microRNAs in human OA cartilage and to determine their relevance to pathological progression. An OA model based on inflammatory stimulation of a chondrocytic human cell line was used to analyze microRNAs deregulation, and results revealed miR-149 severely down-regulated by IL1β and TNFα. Real-time PCR analysis of miR-149 was exerted also in human primary chondrocytes isolated from cartilage of OA donors and postmortem from subjects with no known history of OA, confirming down-regulation in osteoarthritis. Moving on a functional study, miR-149 regulatory effect on tumor necrosis factor alpha (TNFα), interleukin 1 beta (IL1β) and interleukin 6 (IL6) 3'UTRs was evaluated by luciferase assays, and chondrocytes production of TNFα upon miR-149 transfection was measured by enzyme-linked immuno sorbent assay. We found that miR-149 is down-regulated in OA chondrocytes, and this decrease seems to be correlated to increased expression of pro-inflammatory cytokines such as TNFα, IL1β and IL6. OA is a multifactorial disease and we think that our results give new insights for understanding the complex mechanisms of osteoarthritic pathogenesis.
The aim of this pilot study was to analyze the effects of glucosamine (GlcN) and its N-acetyl-phenylalanine derivative (NAPA) in Vitamin A model of osteoarthritis (OA) in rabbits. GlcN or NAPA or saline solution was intra-articularly administered in rabbit OA knees. Histological analysis revealed that treatment with GlcN or NAPA was associated with more homogeneous chondrocyte cellularity, absence of fissures and fragmentation and more intense staining of the matrix with Alcian Blue compared to the articular surfaces of the knees treated with saline solution. Comparative in vitro study performed on rabbit primary chondrocytes revealed that GlcN and NAPA were also able to counteract the IL-1beta-upregulation of genes coding for metalloproteases and inflammatory cytokines. Our preliminary in vivo and in vitro studies suggest that GlcN and NAPA could play a disease-modifying protective role in OA by an anti-catabolic effect and an anti-inflammatory activity on chondrocytes.
IntroductionRecently, we introduced a new deposition method, based on Ion Plating Plasma Assisted technology, to coat titanium implants with a thin but hard nanostructured layer composed of titanium carbide and titanium oxides, clustered around graphitic carbon. The nanostructured layer has a double effect: protects the bulk titanium against the harsh conditions of biological tissues and in the same time has a stimulating action on osteoblasts.ResultsThe aim of this work is to describe the biological effects of this layer on osteoblasts cultured in vitro. We demonstrate that the nanostructured layer causes an overexpression of many early genes correlated to proteins involved in bone turnover and an increase in the number of surface receptors for α3β1 integrin, talin, paxillin. Analyses at single-cell level, by scanning electron microscopy, atomic force microscopy, and single cell force spectroscopy, show how the proliferation, adhesion and spreading of cells cultured on coated titanium samples are higher than on uncoated titanium ones. Finally, the chemistry of the layer induces a better formation of blood clots and a higher number of adhered platelets, compared to the uncoated cases, and these are useful features to improve the speed of implant osseointegration.ConclusionIn summary, the nanostructured TiC film, due to its physical and chemical properties, can be used to protect the implants and to improve their acceptance by the bone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.