Here we demonstrate a microfluidic perfusion system suitable for a long-term (>2 week) culture of muscle cells spanning the whole process of differentiation from myoblasts to myotubes. Cell-adhesive surface microdomains alternating with a robust cell-repellent coating mimic in vivo spatial cues for muscle cell assembly and allow for confining the fusion of myoblasts into aligned, isolated multinucleated myotubes. The microfluidic system provides accurate control of the perfusion rates and biochemical composition of the environment surrounding the cells. Comparing muscle cell-specific differentiation markers and the timing of fusion, we observed no differences in differentiation between microfluidic and traditional cultures. All differentiation assays were fully microfluidic, i.e. they were performed by sequentially changing the fluids in the micro-channels. By delivering fluorescent markers using heterogeneous laminar flows, it was possible to confine a membrane receptor labeling assay to a region smaller than a myotube. Our method can serve as an improved in vitro model for studying muscle cell differentiation and for characterizing extracellular molecules and mechanisms involved in neuromuscular differentiation.
The ability to culture cells in vitro has revolutionized hypothesis testing in basic cell and molecular biology research and has become a standard methodology in drug screening and toxicology assays. However, the traditional cell culture methodology-consisting essentially of the immersion of a large population of cells in a homogeneous fluid medium-has become increasingly limiting, both from a fundamental point of view (cells in vivo are surrounded by complex spatiotemporal microenvironments) and from a practical perspective (scaling up the number of fluid handling steps and cell manipulations for high-throughput studies in vitro is prohibitively expensive). Micro fabrication technologies have enabled researchers to design, with micrometer control, the biochemical composition and topology of the substrate, the medium composition, as well as the type of neighboring cells surrounding the microenvironment of the cell. In addition, microtechnology is conceptually well suited for the development of fast, low-cost in vitro systems that allow for high-throughput culturing and analysis of cells under large numbers of conditions. Here we review a variety of applications of microfabrication in cell culture studies, with an emphasis on the biology of various cell types.
Cellular micropatterning has become an important tool to precisely design cell-to-substrate attachment for cell biology studies, tissue engineering, cell-based biosensors, biological assays, and drug screens. This paper describes a new technique for micropatterning of cells that is based on the use of oxygen plasma as a patterning tool. The technique consists of (1) homogeneously grafting a glass substrate with a protein-repellent interpenetrating polymeric network (IPN) of poly(acrylamide) and poly(ethyleneglycol) [P(AAm-co-EG)] prepared with commercially available reagents and (2) selectively removing this coating using oxygen plasma. We use elastomeric stencils (i.e. self-sealing membranes with through-holes) and microchannels as removable masks for the selective oxygen plasma etch of the IPN areas that are not protected by the mask. The stencil or microchannels are peeled off to reveal cell-adhesive regions separated by the nonadhesive coating. Our method offers a convenient way of patterning a robust protein-repelling material, allows for independently controlling the chemistry of the regions reserved for cell attachment, and can be used to create coculture systems.
The high attrition rate of drug candidates late in the development process has led to an increasing demand for test assays that predict clinical outcome better than conventional 2D cell culture systems and animal models. Government agencies, the military, and the pharmaceutical industry have started initiatives for the development of novel in-vitro systems that recapitulate functional units of human tissues and organs. There is growing evidence that 3D cell arrangement, co-culture of different cell types, and physico-chemical cues lead to improved predictive power. A key element of all tissue microenvironments is the vasculature. Beyond transporting blood the microvasculature assumes important organ-specific functions. It is also involved in pathologic conditions, such as inflammation, tumor growth, metastasis, and degenerative diseases. To provide a tool for modeling this important feature of human tissue microenvironments, we developed a microfluidic chip for creating tissue-engineered microenvironment systems (TEMS) composed of tubular cell structures. Our chip design encompasses a small chamber that is filled with an extracellular matrix (ECM) surrounding one or more tubular channels. Endothelial cells seeded into the channels adhere to the ECM walls and grow into perfusable tubular tissue structures that are fluidically connected to upstream and downstream fluid channels in the chip. Using these chips we created models of angiogenesis, the blood-brain-barrier (BBB), and tumor-cell extravasation. Our angiogenesis model recapitulates true angiogenesis, in which sprouting occurs from a “parent” vessel in response to a gradient of growth factors. Our BBB model is composed of a microvessel generated from brain-specific endothelial cells (ECs) within an ECM populated with astrocytes and pericytes. Our tumor-cell extravasation model can be utilized to visualize and measure tumor-cell migration through vessel walls into the surrounding matrix. The described technology can be used to create TEMS that recapitulate structural, functional, and physico-chemical elements of vascularized human tissue microenvironments in vitro.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.